
ABSTRACT

BOZKURT, GOZDE. Curve and Polygon Evolution Techniques for Image Processing.

(Under the direction of Dr. Hamid Krim.)

In this digital era of our world, huge amounts of digital image data are being collected on a daily

basis. The collected image data is being stored for subsequent processing and use in a wide variety

of applications. For this purpose, it is often important to accurately and precisely extract relevant

information out of this data. In computer vision applications, for instance, an important goal is to

understand the contents of an image and be able to automatically gain an understanding of a scene,

implying an extraction and recognition of an object. This task is, however, greatly complicated by

the acquired image data being often noisy, and target objects and background bearing textural varia-

tions. As a result, there is a strong demand for reliable and automated image processing algorithms,

for image smoothing, textured image segmentation, object extraction, tracking, and recognition.

The objective of this thesis is to develop image processing algorithms which are efficient, statisti-

cally robust and sufficiently general, in order to account for noise and textural variations in images,

and which have the ability to extract and provide compact and useful descriptions of target objects

in images, for object recognition and tracking purposes.

The main contribution of the thesis is the development of image processing algorithms, which

are based on the theory of curve evolution with connections to information theory and probabil-

ity theory. These connections form the basis for extracting a compact object description, in the

form of a polygonal contour. One contribution is the development of a new class of curve evo-

lution equations designed to preserve prescribed polygonal structures in an image while removing

noise. In conjunction with these flows, a local stochastic formulation of a well-studied curve evo-

lution equation, namelythe geometric heat equation, provides an alternative microscopic as well as

macroscopic view, which in turn led to our proposal of vanishing at pre-defined directions. Under

these flows, the limiting shape of a curve is a polygon, pre-specified by the form and the parameters

of the specific flow. The second contribution of the thesis is the development of a new active con-

tour model which merges the desirable polygonal representation of an object directly to the image

segmentation procedure by adapting an information-theoretic measure into an active contour frame-

work with an ultimately unsupervised texture segmentation goal. The polygon-propagating models

we develop can capture texture boundaries more reliably than the continuous active contour models

because the evolution of an active polygon vertex depends on an overall speed function integrated
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along its two adjacent polygon edges rather than on pointwise measurements along continuous con-

tour points. In this way, higher-order statistics which provide more adapted information than the

first and second-order, are captured through both the nature of the information-theoretic criterion

we utilize, and the nature of the polygon-evolving ordinary differential equations we propose. A

supplementary contribution in this sequel is a new global polygon regularizer algorithm which uses

electrostatics principles. The final contribution of the thesis is the development of a simple and

efficient boundary-based object tracking algorithm well-adapted to polygonal objects. This is an

extension of the second contribution of the thesis, and the key idea here is centered around tracking

a relatively few vertices together with their corresponding edges, which in turn yields a bookkeeping

simplicity and hence efficiency.

The parsimonious set of features provided by the three methods developed in this thesis are use-

ful for object-based description and recognition tasks, and in addition, may provide a viable solution

to a parsimonious, and economical representation of large data sets (e.g. a contour represented by a

few landmarks).
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Chapter 1

Introduction

In this digital era of our world, huge amounts of digital image data are being collected on a daily

basis. The collected image data is being stored for subsequent processing and use in a wide variety

of applications. For surveillance applications for instance, the amount of remotely sensed imagery

collected daily by space-borne or airborne systems is on the order of terra bytes. It is often important

to accurately and precisely extract relevant information out of this data for a variety of applications.

It is, however, impossible to manually carry out this processing and analysis wholly by human op-

erators. The acquired image data is often noisy, and target objects and background bear significant

textural variations. It may also be desirable to track features or objects in an image through time to

obtain a dynamic analysis of the scene. In computer vision applications, for instance, an important

goal is to understand the contents of an image and be able to automatically gain an understanding

of the scene and the surroundings, implying an extraction and recognition of an object. As a re-

sult, there is a strong demand for reliable and automated image processing algorithms, for image

smoothing, textured image segmentation, object tracking in video sequences, and object extraction

and recognition.

The broad objective of this thesis is that of developing image processing algorithms which are

efficient, in the sense of ease of computations, fast, statistically robust, in the sense of being resilient

to noise, statistically significant and meaningful, in the sense of accounting for textural variations in

images, with an ability to extract and provide compact and useful descriptions of target objects in

images, for object recognition and tracking purposes.

We next give the motivations for the image processing algorithms we developed, which con-

stitute the core contributions of this thesis, and then describe the organization and summary of the
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thesis.

1.1 Thesis Motivations and Contributions

Curve evolution techniques for image processing involve a propagation or deformation of a curve via

certain partial differential equations (PDEs). Curve evolution techniques are applied to a variety of

problems, such as image filtering, smoothing, image segmentation, object tracking, shape analysis,

and morphological operations. The main contributions of this thesis are, first the development of

a new class of curve evolutions as nonlinear filters for curve and image smoothing, second the

development of a new class of curve evolutions, where the curve takes the form of a polygon for

image segmentation, and which makes use of an information-theoretic measure adapted to texture

segmentation. A third contribution of the thesis is the extension of the second algorithm that is

developed in Chapter 4 to object tracking in video sequences. Potential applications of the proposed

algorithms in shape or object recognition are also alluded to.

The motivation and contribution of each of these algorithms are described in the next three

subsections.

1.1.1 A New Class of Curve Evolutions for Nonlinear Filtering

Curve and image evolution techniques have emerged in recent years as important applications of

PDEs to nonlinear curve and image filtering. The well-known low-pass filtering of an image by a

Gaussian function has been shown by Witkin [147] to be equivalent to evolving an image with a

heat equation, which is a linear PDE also known as a linear diffusion. This in turn lead to vari-

ous developments in nonlinear filtering of images through numerous PDEs and nonlinear diffusion

techniques [6, 110, 117, 122, 136]. In addition to these developments in image filtering, the advance

of curve evolution techniques may be considered as an implication of the desire to develop shape-

based techniques, which is closer in spirit to providing object level knowledge in image analysis.

Image evolution equations operate on a pixel-based knowledge, whereas curve evolution equations

operate on individual level curves of an image, hence at a higher level than the former. Shape infor-

mation of an object in an image, may be reminiscent of a curve extracted from an image, thus for

an object-oriented filtering, curve evolutions may be more appropriate.

Much of the research in curve evolution theory has centered around the so-called geometric heat

equation, which is well-known for its smoothing properties. Indeed, any curve evolved through the
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geometric heat equation is circularized [54]. One way of overcoming this effect is by using prior

information on the preferred directions of important features of objects in an image. Polygonal

structures are ubiquitous in images of man-made objects such as buildings, roads and so on, which

contain many straight lines, often oriented in particular directions.

The first contribution of this thesis is the development of curve evolution techniques which

constitute a new class of nonlinear filters aimed for smoothing along salient lines of an image. These

filters which act on level curves preserve sharp corners, and hence preserve the polygonal structures

present in an image. This is achieved by a modification, indeed a directional generalization, of

the celebrated geometric heat equation. The designed equations or flows preserve certain classes

of features in a curve. This, followed a local stochastic formulation of the geometric heat flow,

leading to a new macroscopic view of this equation, which is later further specified to vanish at

pre-defined directions. The limiting shape resulting from each flow that belongs to the new class

of curve evolving flows is a polygon, pre-specified by the form and the parameters of the specific

flow. When applied to an image, a selective nonlinear filtering along the salient lines in the image

is achieved slowing down the effects of geometric diffusion across important structural directions.

This new class of filters are presented in Chapter 3.

We have also developed a variant of this contribution, for smoothing a group of level curves

of synthetic aperture radar (SAR) imagery, which is particularly robust to speckle noise typically

present in SAR images. These curve evolutions, which lead to a simple segmentation of SAR

images and target recognition on the extracted silhouettes, are presented in [140, 142].

1.1.2 A Polygon Evolution Approach to Image and Texture Segmentation

Image segmentation has received a lot of attention through the years, and a vast array of differ-

ent approaches have been proposed, such as thresholding and local filtering [22, 97, 112, 134], re-

gion growing [100], snakes, and active contours [25, 34, 70, 72, 93], and global energy minimiz-

ing techniques using various perspectives such as Bayesian, and minimum description length [17,

51, 87, 102]. Following the pioneering snake methodology [70], curve evolution approaches, so-

called active contours, have been popular in image segmentation. The key idea in the active con-

tour framework is the construction of an energy functional for the active contour, and its min-

imization through the gradient descent equations that propagate the active contour. Two main

categories of active contour methods are given by; geometric (also called geodesic) active con-

tours [23, 25, 72, 93], where the curve evolution is based on edge information, and region-based
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active contours [29, 115, 121, 150], where the curve evolution is based on the region information

inside and outside the curve.

The region-based active contour models proved to be more robust to noise conditions when

compared to edge-based active contour models. The region-based model usually utilizes simple

region statistics such as means and variances, hence can not account for higher order nature of

the textural characteristics of image regions. In addition, the object delineation by active contour

methods, results in a contour representation which still requires a substantial amount of data to be

stored for subsequent multimedia applications such as visual information retrieval from databases.

Polygonal approximations of the extracted continuous curves are required to reduce the amount of

data since polygons are powerful approximators of shapes for use in later recognition stages such

as shape matching and shape coding.

The second contribution of this thesis is the development of a new active contour model which

nicely ties the desirable polygonal representation of an object directly to the image segmentation

process by including an information-theoretic measure into the active contour framework with an

unsupervised texture segmentation goal. The polygon-propagating models we develop can robustly

capture texture boundaries relative to the continuous active contour models as the evolution of an

active polygon vertex depends on an overall speed function integrated along its two adjacent poly-

gon edges rather than pointwise measurements along continuous contour points. In this way, more

higher-order statistics than the first and second-order are rationally captured through the proposed

information-theoretic measure we utilize, and the nature of the polygon-evolving ordinary differen-

tial equations we derive. This new variational texture segmentation model, is unsupervised since

no prior knowledge on the textural properties of image regions is used, and will be described in

Chapter 4.

A by-product, nevertheless necessary, contribution in this sequel is a new polygon regularizer

algorithm which uses electrostatics principles. This is a global regularizer, and is more consistent

in preserving local features such as corners than a local polygon regularization, as is explained in

Section 4.5.

1.1.3 A Polygon Propagation Approach to Video Object Tracking

Video sequences, i.e. time-varying image sequences, provide additional information on how scenes

and objects change over time when compared to still images. The problem of tracking moving

objects has a variety of applications in video surveillance, traffic monitoring, video coding, and
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robotics. Object tracking methods, may be classified into two categories according to the type of

information they use. Boundary-based methods, which utilize the boundary information along the

object’s contour, make use of snake models [12, 67, 70, 89], or geometric active contour models [24,

114], and usually constrain motion by certain motion models such as rigid or affine. Region-based

methods [9, 10, 145] segment an image sequence into regions (with different motions), which are

matched to estimate motion. The cost of matching regions significantly increases the computational

burden of these techniques.

The third contribution of this thesis is the development of a simple and efficient boundary-based

tracking algorithm well-adapted to polygonal objects. We build on the insight gained from the

the second contribution of the thesis, namely the active polygon framework, to extend it to track

polygon vertices in time-varying images. The key idea here is centered around tracking a relatively

few vertices together with their corresponding edges, which in turn yield a simplicity and efficiency

in bookkeeping. This object tracking method, together with an experimental study of applying

active polygons to an object recognition scenario, are presented in Chapter 5.

1.1.4 Connections Among the Contributions

The three main contributions of this thesis may be cast within a unified objective of extracting a

compact object description, in the form of a polygonal contour, which leads to an efficient repre-

sentation of an object crucial to subsequent computer vision applications. The first contribution, in

Chapter 3, aims at removing unwanted perturbations on curves while preserving salient features. It

drives a curve (a level curve of an image), which is assumed to contain shape information of an ob-

ject in an image, towards a polygon by straightening the curve out. Inspired by these filters designed

for image smoothing, we proceed to a direct polygonal description of an object in an image with a

resulting segmentation, which is the second contribution of this thesis, in Chapter 4. This compact

description of an extracted object by a handful of vertices, in turn leads to the idea of tracking these

features in a time-varying image sequence, as elaborated in Chapter 5. This contribution may also

be viewed as a generalization or extension of that of Chapter 4.

The parsimonious set of features provided by the three methods developed in this thesis, are use-

ful for object-based description and recognition tasks, and in addition, may provide a viable solution

to a parsimonious, and economical representation of large data sets (e.g. a contour represented by a

few points).
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1.2 Thesis Summary and Organization

In Chapter 2 we provide a background on the techniques and concepts that are relevant throughout

this thesis. A review on image and curve evolution techniques is presented in Section 2.2, and the

corresponding numerical implementation technique is given in Section 2.2.3. A brief review of the

literature on segmentation methods is presented in Section 2.3. Snakes, and active contour models

that are related to the algorithms developed in this thesis are introduced in Section 2.3.3.

Chapter 3 describes a new class of curve evolutions developed for feature-preserving curve

and image filtering with a prior knowledge on the salient line directions of objects in an image.

The theory of stochastic differential equations (SDEs) is briefly introduced in Section 3.3.1, and a

formulation of the celebrated geometric heat equation by a local SDE, and thus obtaining a new

microscopic/macroscopic view of this equation, is derived in Section 3.3.2. The insight led to de-

signing a new class of nonlinear filters in the form of diffusions that vanish at pre-defined directions

as explained in Section 3.4. These diffusions on curves yield a limiting polygon shape prescribed by

the parameters of the flow. We have applied this algorithm to smoothing of structures along known

orientation of salient lines in an image while preserving important features. We suggest further ap-

plications of the proposed flows in Section 3.5 such as a shape morphing application in computer

graphics and a shape recognition scenario.

In Chapter 4, we present a new class of variational active contour models for an unsupervised

texture segmentation problem. A brief literature review on texture analysis and segmentation is

given in Section 4.2.1. Through a combination of a novel polygon evolution model in Section 4.3,

and an information-theoretic criterion adapted as an energy functional for the active polygons in

Section 4.4, a robust texture segmentation algorithm is developed as validated through extensive

simulation results provided at the end of Chapter 4. A generalization of the proposed active contour

model to evolution of multiple active contours is also given. Section 4.5 presents a novel global

polygon regularizer idea with a goal of avoiding degeneracy during propagation of the active poly-

gons.

Chapter 5 extends the active polygons acting on a single image to time-varying image sequences,

and presents a video object tracking method in Section 5.1, with an application to tracking targets in

infra red (IR) image sequences. A brief overview on object tracking methods, and motion estimation

methods are also given respectively in Section 5.1.1, and Section 5.1.2. We further demonstrate the

utility of the active polygons with an experimental study on an object recognition application in
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Section 5.2. This may be considered as part of future research based on the framework set in this

thesis.

Conclusions and possible directions of future research are presented in Chapter 6.
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Chapter 2

Preliminaries

This chapter focuses on the background of techniques and concepts that are of relevance throughout

this thesis.

2.1 Notation

A digital image to be processed is a 2-Dimensional (2-D) function denoted byI, I : 
! R, where


 � R
2 is the domain of the function. Processing a functionIo(x; y), which depends on two spatial

variables,x 2 R, andy 2 R, via a partial differential equation (PDE) takes the form;

It = A(I; Ix; Iy; Ixx; Ixy; Iyy) (2.1)

I(0; x; y) = Io(x; y):

Heret is called thetimeorscale. It denotes the partial derivative with respect to (w.r.t.)t (sometimes

shown as@I@t ), and partial derivatives w.r.t. spatial variables are shown inside the operatorA on the

right hand side. The solutionI(t; x; y) is referred to as ascale spacefor 0 < t <1. If A is a linear

(nonlinear) operator, the scale space is called linear (nonlinear).

Definitions of some operators that are commonly invoked in PDE’s often used in computer

vision are given next. Thegradientof I(t; x; y) is a two-dimensional vector (2-D vector) defined as

rI def
= (Ix; Iy)

T ; (2.2)
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where the superscript T denotes the transpose of a vector. TheL2 norm of the gradient is given by

jjrIjj def
=
q
I2x + I2y : (2.3)

Vector fields arise when the gradient operatorr is applied to a scalar function such asI(x; y). The

divergenceof any vector field(I(x; y); J(x; y))T is

r �
0@ I

J

1A def
= Ix + Jy: (2.4)

TheLaplacianoperator acting on a 2-D function is defined as�I = Ixx + Iyy. It is clear that

the Laplacian can also be written as�I = r � rI. Throughout the thesis, an inner product (dot

product) is denoted by either< �; � >, or by a dot � . The area of a regionR is denoted byjRj. A

boldface letter is used to denote both a vector and a matrix.

Some background on curve and image evolution techniques, and an overview of image segmen-

tation techniques are presented in the following sections.

2.2 Image and Curve Evolution Techniques

Obtaining a family of images (curves) from an initial image (curve) through a PDE is referred to as

an evolution of the image (curve) through timet. It is equivalent to the scale space concept defined

in the previous section. We look at some well-known evolution equations for images and curves

next.

2.2.1 Image Evolutions

It is known that a low pass Gaussian filter from signal processing may be implemented by evolving

the intensities of an imageIo(x; y) via the linear heat equation [147],

I(0; x; y) = Io(x; y);

It(t; x; y) = r � �rI(t; x; y)�; t > 0: (2.5)

The solution to this equation yields a parameterized family of new imagesI(t; x; y), where the

image at each timet > 0 is equivalent to the original imageI0(x; y) = I(0; x; y) convolved with a

9



Gaussian filter of variance2t. This equivalence gives rise to a natural generalization of the low pass

filter using nonlinear diffusion.

Nonlinear diffusion has a distinct advantage in image processing over linear diffusion in that

it may be allowed to handle anisotropies (giving rise to the so-calledanisotropic diffusion) in an

image.

A popular approach to anisotropic diffusion is based upon models first introduced by Perona and

Malik in [117]. Since then, these models have received a tremendous amount of attention, as have

the models based upon curve evolution theory. Perona and Malik extended the linear heat equation

by considering diffusion coefficients which vary with the strength of the gradient at different points

of an image. This leads to PDE’s of the formIt = r� �g(krIk)rI�, whereg : R ! R is typically

a monotonically decreasing function which suppresses diffusion where the gradient is high (near an

edge).

Nonlinear diffusion is particularly important when salient image features are of interest. For

example, when the preservation of sharp edges is important, it is natural to consider an anisotropic

model which diffuses an image only along the local direction of its edges. One such approach is to

consider an imageI(x; y) as a collection of iso-intensity contours, or level curves, and to note that

at an edge point, the direction of the edge corresponds to the tangent of the iso-intensity contour

running through that point. Let� denote the direction normal to the level curve through a given

point (the gradient direction), and let� denote the tangent direction.

We may write these directions in terms of the first derivatives of the image as

� =
(Ix; Iy)q
Ix

2 + Iy
2
; � =

(�Iy; Ix)q
Ix

2 + Iy
2
;

Since these constitute orthogonal directions, we may exploit the rotational invariance of the Lapla-

cian operator and re-write the linear heat equation in terms of these two variables:

It = r � (rI) = I�� + I��

whereI�� andI�� denote the second-order directional derivatives in the directions of� and� re-
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spectively. One may then derive the following expressions

I�� =
I2xIxx + 2IxIyIxy + I2yIyy

I2x + I2y
(2.6)

I�� =
I2yIxx � 2IxIyIxy + I2xIyy

I2x + I2y
: (2.7)

By subtracting the normal diffusion component (2.6) from the linear heat equation, which diffuses

isotropically, we obtain the following anisotropic model, which diffuses along the boundaries of

image features but not across them

It = I�� =
I2yIxx � 2IxIyIxy + I2xIyy

I2x + I2y
: (2.8)

We may obtain this same equation in a completely different and much more geometric manner by

specifying the evolution of each level curve in the image as seen in the next section.

2.2.2 Curve Evolutions

Let us denote a family of smooth curvesC (p; t) = (X (p; t);Y(p; t)), which is a mapping from

I � R � [0; T ] ! R
2 , wherep 2 I is a parameter along the curve, andt parameterizes the family

of curves. Denote the tangent vector to the curve atp by T = C 0 = (X 0;Y 0), and the normal

vector to the curve atp by N = (�Y 0;X 0). We considerregular curves whose tangent is never

zero (C 0(p) 6= 0 for all p 2 I).

Givenp 2 I, thearclengthof a regular parameterized curveC from the pointpo is by definition

s(p) =

Z p

po

jjC 0(p)jjdp; (2.9)

wherejjC 0(p)jj =
p
(X 0(p))2 + (Y 0(p))2 is the length of the vectorC 0 [41]. Henceds=dp =

jjC 0(p)jj.
The most general deformation of a planar curveC o is given by

@C

@t
= �(p; t)T + �(p; t)N ; (2.10)

C (p; 0) = C o(p): (2.11)

It can be shown that by a reparameterization of points, the first equation above can be reduced to [75]
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@C (p;t)
@t = �(p; t)N : Considering curve evolutions which depend only on the curvature function�

of the curve,� can be written asF (�), and a local deformation as a function of curvature may be

written as

C t = F (�)N : (2.12)

The curvature function is the second derivative of the curveC , in the direction of the unit normal

N . If the curve is parameterized by its arclength parameters, the second derivative is given by

C ss = �N . The following flow

C t = C ss = �N ; (2.13)

referred to as theGeometric Heat Equation(GHE), is well known for its smoothing properties. It

has been shown by Grayson [54] that any closed, embedded curve evolving according to (2.13) will

convexify and smoothly shrink to a single point in finite time, becoming more and more circular

along the way. This flow is also referred to as thecurve shortening flowsince it corresponds to the

gradient (descent) evolution of the arclength functional. See [74–76] for a more extensive discussion

of the many properties associated with this flow. Since the evolution speed is a function of the

curvature at each point on a curve, this flow gives rise to aEuclidean invariantscale space (see [5,

6, 147]) in which finer features are removed first, followed by coarser features, as the curve evolves.

A related flow, based upon the affine geometry of the curve, is given byC t = �1=3N and shares

many of the same properties as the curve shortening flow but gives rise to a more generalaffine

invariant scale space (see [5, 124, 125]).

2.2.3 Level Set Method

A new and efficient method for evolving a single iso-intensity contour has recently been proposed,

referred to as a level set method [126]. The parameterized curveC (p; t) is embedded into a surface,

which is called the level set function�(x; y; t) : R2 � [0; T ] 7! R. The curveC is the zero-level

set of this function�(x; y; t):

C = f(x; y) : �(x; y; t) = 0g: (2.14)

The evolution equation for�(x; y; t) is derived from the constraint that at any timet, we should

have�(C (t); t) = �(X (t);Y(t); t) = 0, and differentiating this constraint with respect tot, we
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get

�t +�xXt +�yYt = 0; (2.15)

�t + (�x; �y) � (Xt Yt)T = 0; (2.16)

�t +r� �C t = 0: (2.17)

Substituting the general form of the curve evolution equation Eq.(2.12), which depends on local

geometry of the curve, into Eq.(2.17) above yields,

�t +r� � F (�)N = 0: (2.18)

Noting that the outward unit normal vector can be written as,N = r�=jjr�jj, an evolution

equation for� is given by

�t = �F (�)jjr�jj: (2.19)

Thus, the curveC evolving according to Eqn (2.12) can be obtained by the zero-level set of the

function� which evolves according to Eqn (2.19). The selection of the speed functionF (�) has

been a subject of research [126]. The simplest form whereF (�) = �� results in

�t = � jjr�jj: (2.20)

Note that the unit normal and the curvature of a level curve may be expressed asN = r�
kr�k and

� = r �
�

r�
kr�k

�
. This allows us to rewrite the above equation completely in terms of� and its

derivatives,

�t = r �
� r�

kr�k
�
kr�k = �2

y�xx � 2�x�y�xy +�2
x�yy

�2
x +�2

y

(2.21)

giving us a PDE which is identical to (2.8), and is also referred to as the geometric heat equation

since it is a result of applying the previous geometric heat equation (2.13) to the zero-level curve of

the level set function�.

For curve propagation, the level set methods constitute an Eulerian approach in which the un-

derlying coordinate system remains fixed. The parametric formulation of the curve propagation is

in a Lagrangian framework in which the coordinate system depends on the parameterization corre-

sponding to the curve’s rest position. In Figure 2.1, it can be observed that the level set formulation,

where a level curve is embedded into a higher dimensional level set function�, may be more advan-
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tageous in handling topological changes when compared to parametric evolution methods of curves

(also called marker particle methods [126]). This is due to the fact that the zero level set of� need

not be simply connected, may split, and merge during the evolution.

z  =  Φ

Φz  = (x,y,t
2
)

(x,y,t
1
)

t

tt

1

2
2

(

((

)

))
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Figure 2.1:Depiction of a level set formulation versus a parametric formulation of a curve. Left column:
(Eulerian framework) Evolution of a level set function�(x; y; t) as a graph on a fixed grid is shown at time
instantst1 andt2. Note that topology changes are handled naturally; Right column: (Lagrangian framework)
Evolution of zero level set values of the surface via marker particle methods, i.e. evolution of position vector
of a curve,(X (p);Y(p)) = C (p) is also shown at time instantst1 andt2. Notice that it is hard to manipulate
topology changes, and serious bookkeeping is required.

The level set function� is usually picked as the signed distance function from the zero level

curve which is the contour that is to be evolved. A fast level set method so called as narrowband

technique [2] developed for propagating interfaces is used in the implementation. To speed up

the curve evolution algorithms we develop in this thesis, a periodical re-initialization of the signed

distance function, i.e. the level set function, is also carried out by the technique developed by [152].

In the level set equation, (2.19), the speed functionF may be given byF = � + ��, with an

advection (first term on the right), and a diffusion term or a curvature term (second term on the

right). With a simplest flow whenF = 1,

�t = �jjr�jj; (2.22)

a curve propagates in its inward normal direction at each point with a unit speed, and it develops
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singularities, i.e. points that are not differentiable, in finite time [126]. Once such points develop,

the normal is not defined at those points, and the propagation becomes ambiguous. Thus, in order

to continue the evolution, aweak solutionis required. Note that a solution is a weak solution of a

differential equation if it satisfies an integral formulation of the equation. This in turn implies that

the weak solution, as a potential solution, may not require the same degree of differentiability, and

allows for more general solutions [126]. A way to obtain such a solution is provided by Sethian,

through the notion of an entropy condition, also called Huygen’s construction. This is motivated by

an analogy of a curve with a propagating flame, and once a point is ignited by the expanding flame

(curve), it stays burnt. That is, information once lost, can not be re-created during the evolution. The

parallelism of this development and the theory of viscosity solutions of Hamilton-Jacobi equations,

as well as shocks and rarefaction fans formations in hyperbolic conservation laws can be found

in [126]. To solve the Eq.(2.22), stable numerical schemes are developed, which select the correct

weak solution corresponding to the viscous limits of the associated curvature-driven equations. See

[86, 88] for detailed discussions on hyperbolic conservation laws. Upwind differencing schemes in

computing first order spatial derivatives which use values upwind of the direction of information

propagation, are widely employed [126]. The curve evolution equations we develop in this thesis

are curvature-driven equations, for which central-differencing schemes for the spatial derivatives

and forward-differencing schemes for the time derivatives are adequate. For the implementation of

the level set method, and its re-initialization step, however, upwind differencing schemes are used.

2.3 Overview of Segmentation Methods

The problem of image segmentation refers to the partitioning of a domain
 of a given imageI into

regions such that each region has properties distinct in some sense. It is expected that the resulting

partitions correspond to meaningful parts of objects in an image. Image segmentation is an essential

first step in early vision and provides a mechanism for an automatic analysis of image contents.

Some important applications include automatic target recognition, remote sensing, automatic visual

inspection in manufacturing processes, biomedical image analysis, tracking objects in motion, and

so on. In the context of remote sensing of the earth for instance, the image would be partitioned into

regions of different terrain or land type.

An initial task for segmentation is to determine the features which delineate and reliably dis-

tinguish different regions. Some common features which discriminate the region characteristics are

15



intensity, color, and texture. Following the definition of features for the segmentation problem, it

is necessary to select a “good” criterion for capturing and evaluating the features which yield a

partition of the image domain into “different” regions.

Existing image segmentation methods may broadly be classified into four groups [153] as de-

scribed in the next subsections.

2.3.1 Thresholding and Local filtering approaches

Perhaps the earliest approaches to image segmentation are based on thresholding techniques. They

rely on a very simple concept which is to compare each pixel value (I(x; y); (x; y) 2 
) with a

parameter (threshold) and decide whether the pixel is within the region or not. The value of the

threshold may be globally or locally set [112, 134]. In most methods, the threshold is chosen from

the intensity histogram of either the whole image or local regions of the image.

Local filtering approaches for image segmentation are based on detection of edges which cor-

respond to object boundaries or the boundaries between image regions. The celebrated early work

by Marr [96] and based on a “primal sketch” concept entailed localizing edges in the image for

subsequent use by high level image processing steps. Marr and Hildredth [97] developed an edge

detection filter based on local maxima of the gradient magnitude. When the first derivative achieves

a maximum, the second derivative is zero. For this reason, an edge detection strategy is to isolate

zeros of the second derivatives ofI. The differential operator used in these so-called zero-crossing

edge detectors, is the Laplacian. In order to mitigate the increase in pixel noise due to differenti-

ation, the image is pre-filtered with a lowpass filter such as a Gaussian kernel. A variant of this

idea such as the Canny edge detector [22] uses the zero-crossings of the second order operator in

Eq.(2.6) instead of the Laplacian. For efficient implementations, Deriche in [40], derives exact

recursive filters, taking a similar analytical approach to Canny.

Segmentation techniques in this group make use of local information, and can often be imple-

mented as a convolution of the given image with the impulse response of a local filter for efficiency

sake. They, however, rely on high gradient values in the image to detect prominent boundaries

between regions, hence, making them sensitive to noise and affecting the continuity of the edge

contours as a result.
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2.3.2 Region growing techniques

Region growing techniques partition an image domain intok disjoint regionsO1; � � � ; Ok, (i.e.,


 =
Sk
i=1Oi), such that the imageIo is homogeneous in some sense within each region. Each

regionOi is a connected region. Morel and Solimini [100] describe a general multiscale approach

to region growing as follows: (i) Initialize the algorithm with the finest possible segmentation at

a small scalet, i.e. consider each pixel as a separate region; (ii) Merge all pairs of regions whose

“merging” improves the segmentation; (iii) Iterate (go to (ii)) by increasing the scale parameter.

Choosing the criterion to perform step (ii) results in different algorithms.

For instance, a piecewise (p-w) constant model for the image is used by [78] as the merging

criterion. To a regionOi, the average value ofIo over that region is assigned. Given average values

Ii in regionOi and Ij in a neighbor regionOj , the regionsOi andOj are merged by removing

the boundary between them and replacing bothIi andIj with their weighted averagejOijIi+jOj jIj
jOij+jOjj

.

HerejOij is the area of regionOi. The algorithm looks for a decrease of global energy by merging

these regions and by updating the image toI. The global energy is a least squares criterion, i.e.R jjI � Iojj2 plus a penalty on the total length of the boundaries`. However, the quadratic penalty

on the difference between the estimateI and the initial dataIo is not well suited to non-Gaussian

noise, such as speckle noise in SAR images.

An earlier method by Pavlidis in [100] also starts by taking all pixels as regions, and merging

every pair of regionsOi andOj such that variance ofIo overOi
S
Oj is less thant (scale).

Variants of region growing or merging methods may yield alternative approaches, e.g. region

splitting, and region split-and-merge methods ( [100]) which combines the two.

Region growing methods have an advantage of using statistics inside regions, they, however,

often generate irregular boundaries [153].

2.3.3 Active contour methods

Active contour models have been widely used in image segmentation applications. The general idea

in an active contour framework is to define energy functionals whose local minima comprise a set

of solutions, e.g. the boundaries of regions, available to higher level processes.
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Snakes

One of the pioneering works in this field is due to Kass, Witkin, and Terzopoulos [70] who addressed

the problem of finding salient image contours like boundaries of objects, edges, lines, by so-called

“snakes” algorithms. They aimed at having the snake lock onto image features by minimizing an

integral measure which represents the snake’s total energy. By adding suitable energy terms to the

minimization, it is possible for a user to push the model out of a local minimum towards the desired

solution. Initially, the user places some contour (snake) near an image structure. The constraint

forces that act on a snake then push the snake towards features of interest.

Representing the position of the contour parametrically,C (p) = (X (p);Y(p)), wherep 2
[0; 1], Kasset.al. defined the snake’s total energy functional, as

E(C (p)) =

Z 1

0
Eimage(C (p))dp+

Z 1

0
Eint(C (p)) +Econ(C (p))dp: (2.23)

Here,Eint represents the internal energy of the snake due to bending:

Eint = (w1(p)jjC p(p)jj2 + w2(p)jjC pp(p)jj2)=2;

wherew1 andw2 control the “tension” and “rigidity” of the snake respectively. (Note that the

subscripts denote derivatives with respect top, and jj � jj denotes the standard Euclidean norm.)

Their basic snake model is a spline under the influence of image forces, internal constraints, and

other general constraint forces,Econ. In an image force,
R 1
0 Eimage(C (p))dp, Eimage(x; y) is a

scalar potential field defined on the image plane. The local minima of
R
Eimage attract the snake.

For example,Eimage can be chosen as an edge functionalEedge= �jjrI(x; y)jj2, which drives the

snake to contours with large image gradients, i.e. the intensity edges.

First Connection between Curve Evolutions and Active Contours

The mathematical foundation of another class of geometric active contours was based onEuclidean

curve shortening. Defining the length functional (see arclength definition (2.9))

L(t) =

Z 1

0

��������@C (t)

@p

�������� dp;
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then differentiating (taking the “first variation”), and using integration by parts, we have

L0(t) = �
Z L(t)

0

�
@C

@t
; �N

�
ds

where� is the curvature,N is the inward unit normal, andjj@C@p jjdp = ds. Thus the direction in

whichL(t) is decreasing most rapidly is achieved when

@C

@t
= �N

which defines agradient flow. (For the derivation of this curve length shortening flow, see [148].)

A new active contour paradigm was proposed in [25, 72, 148], by changing this ordinary Euclidean

arc-length function along a curveC (p) with parameterp given by

ds = jjC pjjdp = (X 2
p + Y2

p )
1=2dp

to

ds� = �ds = (X 2
p + Y2

p )
1=2�dp

where�(x; y) is a positive differentiable function. Thus a new metric is defined with which a new

gradient flow is to be found. The gradient flow for the curve shortening relative to the new metric

ds� will be computed, then the first variation of

L�(t) =

Z 1

0

��������@C@p
���������dp;

will lead to
@C

@t
= (���r� �N )N :

The metricds� has the property that it becomes small where� is small and vice versa. Thus at such

points, lengths decrease, and less energy is needed in order to move. If one wants the contour lock

onto edges of an image, then it is reasonable to construct a weight which is almost zero near edges,

and almost 1 when it is far from the edges. SincejjrIjj is a local indicator of strength of edges in

an image,� is chosen as

� =
1

1 + jjrIjj :

These geometrical snakes are very local models, and are only sensitive to data near the curve.
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Figure 2.2: A piece-wise constant image consisting of two regions.

The initial contour has hence to be reasonably close to boundaries. The local property also causes

these models to be very sensitive to noise.

Region-based Active Contours

Region-based active contours were proposed to overcome the problems with the geometric or

geodesic [25, 72, 148] active contours by using both local and global information. The main idea is

to assume that the image consists of a finite number of regions, that are characterized by a prede-

termined set of features or statistics such as means, variances, textures etc. These features/statistics

can be estimated from the image data, hence an energy functional may be constructed to pull these

statistics apart, i.e. maximize the distance between them in order to separate the corresponding

regions. One advantage over the models in the previous subsection is that there is no need to cal-

culate gradients of the image which are usually very sensitive to noise. Region based flows are

therefore much more robust to noise, at a cost of additional imposed assumptions on the images,

and additional computations.

One such assumption is one’s ability to approximate an image by constants, i.e. assuming that

the image consists of piecewise constant regions. Let an image consist of only two regions, a

foregroundRf , and a background
nRf , and let these be approximated by constants. FixC , an

arbitrary closed curve in the image domain
, and therefore
 is partitioned intoR andRc, regions

inside and outsideC respectively (Figure 2.2). An energy functional to separate the means of the

two regionsR andRc, sayu andv respectively, is given by Yezzi, Tsai, and Willsky [149]

EYTW(C ) = �1

2
(u� v)2: (2.24)

A gradient-descent flow on the above energy functional will maximize the Euclidean distance be-

tween the mean of regionR and the mean of region
nR. The energy in (2.24) hence will be

minimum when the curveC locks onto the boundary between the foreground (target object), and
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the background.

A similar energy functional is given by Chan and Vese [29]

ECV(C ) =

Z Z
R
(I � u)2dxdy +

Z Z

nR

(I � v)2dxdy: (2.25)

The resulting flow in the direction of the gradient descent will automatically move the contour

towards the boundary@Rf of the target shape, to minimize this fitting energy. For instance, an

initial contour encompassing the regionRf will flow inward towards the boundary; while a contour

insideRf will flow outward; and a contour which overlapsRf will flow in both directions towards

the boundary. This makes the initial placement of the contour less restrictive.

The data term, resulting from this formulation, was, however, shown to possibly require addi-

tional regularization depending on the particular types of noise, e.g. for salt and pepper type noise,

the contour may weave around noisy regions and result in erroneous regions. A regularizing term

(penalty on the length of the curve) is added to yield for instance the following energy functional

E(C ) = EYTW + �

I
C

ds (2.26)

where
H
C ds is the total arclength of the curve, and� is a parameter which determines the amount

of the desired regularization. The aim is to thus prevent the length of the curve from getting imprac-

tically long and producing smooth boundaries. The corresponding gradient descent flow forEYTW,

can be shown to be

@C

@t
= (u� v)(

I � uR
R dxdy

+
I � vR


nR dxdy
)N � ��N ;

= fIN � ��N : (2.27)

(A very similar derivation for the first term (data term) is deferred to Chapter 4). The regularizing

term (second term above) may also be viewed as a shape prior which is especially very strong at

contour points with high curvature. Therefore, there is a trade-off between the data-driven term and

the regularizing term. The data-driven term, however, usually dominates the flow.

2.3.4 Global optimization approaches based on energy functionals

The goal of most active contour algorithms is to extract the boundaries of homogeneous regions

within an image, whereas the goal of most nonlinear diffusion algorithms is to smooth an image
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within homogeneous regions but not across the boundaries of such regions. A well-known math-

ematical model proposed by Mumford and Shah [102] simultaneously addresses both goals. They

develop an energy functional which approximates an image by smooth functions in each region

instead of constant ones. The Mumford-Shah (M-S) functional is given by

E(C ; fR; fRc) =

Z Z
R
(fR � I)2dxdy +

Z Z
Rc

(fRc � I)2dxdy

+

Z Z
R
jjrfRjj2dxdy +

Z Z
Rc

jjrfRc jj2dxdy + �

I
C

ds; (2.28)

whereC is the closed, smooth segmenting curve,I is the observed image data,fR is the smooth

function inside the curve,fRc is the smooth function outside the curve. Minimizing Eq. (2.28) then

corresponds to finding estimatesfR andfRc in regionsR andRc respectively.

The first two terms in the M-S functional are the data-fidelity terms (like the measurement/

observation model), the second two terms are the smoothness terms in the given regions (like a

prior model forf givenC ). The last term is a prior model forC which penalizes its arc length.

The M-S functional, hence, captures the desired properties of segmentation and reconstruction by

piecewise smooth functions as opposed to p-w constant models in Eq.(2.24), and Eq.(2.25).

There are numerous other algorithms based on minimizing different criteria such as Minimum

Description Length (MDL) criteria [87], Bayesian criteria [17]. The problem of minimizing energy

functionals such as Eq.(2.28) or other energy functionals (MDL or Bayes criteria) is principally

computational (e.g. simulated annealing [51]). To overcome this difficulty, algorithms such as

mean field annealing [14, 61, 132], graduated non-convexity [17] have also been explored.
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Chapter 3

Stochastic Differential Equations and

Geometric Flows

In this chapter, we present a new class of curve evolution equations for smoothing of structures

along the known orientation of salient lines in curves and images while preserving their important

features. The contents of this chapter are outlined as follows. After an introduction in Section 3.1,

we briefly review and recap, as was described in Chapter 2.2, some theoretical concepts associated

with the curve shortening flow, including its connection to a nonlinear, directional diffusion equa-

tion in which image values diffuse locally only along the directions of its edges in Section 3.2. In

Section 3.3, we provide a stochastic equivalent equation which in turn unveils a new shape/feature-

driven flow described in detail in Section 3.4, which we also believe could offer a variety of appli-

cations outside the recognition and classification problems. We conclude with some illustrating and

substantiating examples in Section 3.5, and conclusions in Section 3.6.

3.1 Introduction

In recent years curve evolution has emerged as an important application of partial differential equa-

tions (PDE’s) in image processing, computer vision, and computer graphics. Curve evolution tech-

niques have been applied not only to individual curves, for applications such as edge-detection,

skeletonization, and shape analysis, but have also been considered for their simultaneous action on

the level sets of an image in a number of geometrically based anisotropic smoothing algorithms.

Osher and Sethian [111, 126] extended this latter perspective to the treatment of individual curves

through a set of algorithms, known as level set methods, which enable the implementation of curve
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and surface evolution on a fixed grid. These techniques have aided a number of researchers in push-

ing the application of curve evolution to new limits by providing a simple framework for treating

certain types of singularities such as shocks and topological transitions [109, 111].

Much of the research in curve evolution theory has centered around the so called geometric heat

equation [54] in which a curve is evolved along the normal direction in proportion to its signed

curvature. This flow is well known for its smoothing properties [74–76] and the fact that it cor-

responds to the gradient evolution for arclength (thereby earning the namecurve shortening flow).

Because curvature is a purely geometric quantity (invariant to rotation and translation), curvature-

based motion gives rise to a Euclidean invariant scale space [5, 6, 147], allowing one to trace fea-

tures in a curve from finer to coarser scales as the evolution proceeds. An affine invariant scale space

can be obtained from a related curvature flow which depends upon the cube root of the curvature

(see [5, 124, 125]).

When applied to the level sets of an image, these flows have a powerful denoising effect when

run for a short amount of time. If run for too long, however, even large scale features will be de-

stroyed. The reason stems from the fact that as the geometric heat flow shrinks any closed curve, the

curve becomes more and more circular (elliptical in the case of the affine flow) and will eventually

collapse into a single point [54]. It is therefore not always possible to preserve desired features in

the shapes of objects (corners for example) if too much evolution is required to remove a significant

level of noise. Furthermore, it is not well understood how these curvature-based filters are affected

by different noise distributions and when this sort of problem may occur.

To the best of our knowledge, and aside from [80, 81], nonlinear diffusion in the previous litera-

ture was discussed from a purely deterministic perspective. In this chapter, we provide a stochastic

formulation of the geometric heat equation and use the resulting insights to develop a new class of

curvature-based flows and anisotropic diffusion filters which preserve desired features in the shape

of an object. Under these new flows, evolving curves take the limiting form of a polygon (see [20]

for evolutions of polygons related to the geometric and affine geometric heat flows, and [144] for

evolutions of polygons globally through an electric field concept). The resulting diffusion models

may therefore be applied for much longer periods of time without distorting the shapes of polygonal

objects in the image, thereby mitigating the tradeoff between noise removal and shape distortion.

Polygonal structures are ubiquitous in images of man-made objects (buildings, roads, vehicles,

and so on), which contain many straight lines, often oriented in particular directions (e.g. horizontal

and vertical), that come together to form sharp corners. The ability to preserve such distinctive
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features is not only desirable when filtering an image which contains these types of shapes, but

is also important when applying low level smoothing to an extracted shape since such features

constitute important and powerful cues for recognizing objects in higher level vision algorithms.

We will present both applications in this chapter. From a dual perspective to our contour-based

approach to shape representation, skeletonization approaches may also allow shape analysis without

displacement of corners [18, 35, 75, 107, 118, 129].

In this chapter, we develop a new class of curve evolutions, which are obtained by a modification

of the geometric heat equation. Given an initial shape in the form of a continuous curve, the class of

curve evolution equations we will obtain, deform it into a pre-specified final polygonal shape. The

problem of deforming an input shape into a different form has been of interest in various fields such

as computer graphics [52].

3.2 Background

The geometric heat equation, introduced in Chapter 2, may be obtained as can be recalled in a

geometric manner by specifying the evolution of each level curve in the image. LetC denote a

particular iso-intensity contour which we will deform over time via the following flow,

C t = C ss = �N (3.1)

wheres denotes the arclength parameter,� the Euclidean curvature, andN the inward unit normal.

Equation (3.1), referred to as theGeometric Heat Equation(GHE), is well known for its smoothing

properties. It has been shown by Grayson [54] that any closed, embedded curve evolving according

to (3.1) will convexify and smoothly shrink to a single point in finite time, becoming more and more

circular along the way. If we apply the geometric heat flow to every single level curve in the image

we obtain the same anisotropic diffusion equation that we derived in Chapter 2. To see this, note

that at timet each level curveC k (where the indexk distinguishes one level curve from another)

is implicitly described byu(t; x; y) = uk whereuk denotes a particular intensity in the image. Let

us choose a parameterization ofC k so thatC k(t; p) = (X (t; p);Y(t; p)) for p 2 [0; 1] and for

all t � 0. We may then writeu
�
t;C k(t; p)

�
= u

�
t;X (t; p);Y(t; p)� = uk. Differentiating this

expression with respect tot yields

ut +ru �C t = ut +ru � (�N ) = 0:
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Note that the inward unit normal and the curvature of each level curve can be expressed asN =

� ru
kruk and� = r �

�
ru
kruk

�
. This allows us to rewrite the above equation completely in terms ofu

and its derivatives,

ut = r �
� ru
kruk

�
kruk = u2yuxx � 2uxuyuxy + u2xuyy

u2x + u2y
(3.2)

giving us a PDE which is identical to (2.8).

Equation (3.2) is also referred to as the geometric heat equation since it comes from applying

the previous geometric heat equation (3.1) to each level curve of an imageu. This double meaning

of the termgeometric heat equationis disambiguated by the context in which the flow is applied

(i.e. either to an image or to a curve). In this chapter, we will be interested in both cases and

will present directional generalizations of the geometric heat flow which are designed to preserve

certain types of features either in a curve or in an image. We first however, reformulate the geometric

heat flow from a stochastic point of view, giving new insights into the nature and behavior of this

nonlinear diffusion model. It was precisely these insights that led us to the generalizations presented

in Section 3.4.

Remark: We note that, in general, the popular anisotropic diffusion models of Perona and Malik

in [117], are not related to curve evolution theory and are only intended for images, not curves

(unless the curve has the form of a graph). As such, we will not attempt to relate the curve evolution

models developed in this thesis to Perona-Malik models which represent a different perspective on

the subject of nonlinear diffusion.

3.3 Stochastic Formulation of a Geometric Heat Equation

3.3.1 Introduction to Ito Diffusion

The diffusion of a particle is usually well modeled by a Stochastic Differential Equation (SDE)

which, in turn, represents the underlying microscopic process of an evolution of a pixel or a point.

The dynamics of this evolution at a macroscopic level are captured by a PDE, also referred to as

a generator (infinitesimal) of the diffusion [80, 81, 108]. Suppose we want to describe the motion

of a small particle suspended in a moving liquid, subject to random molecular bombardments. If

b (t;x ) 2 R
n is the velocity of the fluid at a pointx 2 R

n and timet 2 R
+ , then a widely used
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mathematical model for the positionX (t) of the particle at timet is an SDE of the form

dX (t) = b (t;X (t))dt + � (t;X (t))dB (t); (3.3)

whereX (t) is ann-dimensional stochastic process,� (t;x ) 2 R
n�m , andB (t) is anm-dimensional

Brownian motion.b (�; �) is called thedrift coefficient, and� (�; �) is called thediffusion coefficient.

The first term in this equation corresponds to a non-random/deterministic motion, whereas the sec-

ond term models randomness or noise in the motion.

The solution of such an SDE may be thought of as a mathematical description of the motion of a

small particle in a moving fluid, and such stochastic processes are called (Ito) diffusions [108]. For

many applications, a second order partial differential operatorA can be associated to an Ito diffusion

X (t) given by Eq. (3.3). The basic connection betweenA andX (t) is thatA is the generator of

the processX (t). If w(x ) 2 C2
0 (R

n), (i.e., it is continuous with continuous derivatives up to order

2, and has a compact support), thenA is given in the form

A w =
1

2

X
i;j

(� � T )i;j(x )
@2w

@xi @xj
+
X
i

b i(x )
@w

@xi
: (3.4)

In conjunction with this, the so-called Kolmogorov’s backward equation [108], gives a probabilistic

solution to linear partial differential equations. Kolmogorov’s theorem states that givenX (t) =

(X(1)(t);X(2)(t)), whereEx [�] is the expectation operator with respect to the probability law of

X (t) starting at the pointx , and defining(t;x ) = Ex [f(X (t))], then there exists an operator

A such that

@

@t
= A; t > 0; x 2 R

2 ;

(0;x ) = f(x ); x 2 R
2 :

SDEs and stochastic processes, most commonly the Brownian motion, have previously been

used in curve and image analysis. Mumford [101] used it to model completion curves of occluded

edges, the so-called elastica. By taking the curvature function (of arc length) as a Gaussian process,

and the tangent direction on the curve then as a Brownian motion, he derived the probability of the

curves that link occluded edges. For a more general situation, e.g. curves inR
3 , Mumford used other

sorts of stochastic processes such as an Uhlenbeck process to find the elastica. Williams and Jacobs

[146], later in their “Stochastic Completion Fields” work, define the same SDE as Mumford’s, for
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a particle’s position and the orientation, and through this model of diffusion incorporate the prior

assumption that the maximum likelihood path followed by a particle between two positions and

directions is a curve of least energy, and solve it by a discrete formulation. Similarly, a Kalman filter

which produces estimates of a system as it evolves in time and affected by noise, (which is indeed an

SDE written for the system and its observations), was used in [37] for grouping of contour segments.

Our use of SDEs is along a different line of thought in that our inspiration starts with a desired effect

of a nonlinear filter. Specifically, the theory of SDEs provides us with a microscopical interpretation

of the well-studied geometric heat equation, and leads to a new macroscopic description of this

equation which in turn is used to develop a new class of curve evolutions or filters.

3.3.2 Stochastic Formulation of the Geometric Heat Equation

Let us denote by�(t;x ) the angle between the outward normal to the curve and the x-axis at

each spatial pointx = (x; y). The outward unit normalN can then be expressed in terms of

the angle� asN = (cos(�(t;x ); sin �(t;x )), which is re-written in terms ofu(�) asN (t;x ) =

(ux(t;x ); uy(t;x ))=
q
ux(t;x )2 + uy(t;x )2. It follows, �(ux(t;x ); uy(t;x )) = tan�1(uy(t;x )

ux(t;x ) ):

Using these equations, and defining an operatorAGHE of the form

AGHEu(t;x ) = sin2 �(ux(t;x ); uy(t;x )) uxx(t;x )

� 2 sin �(ux(t;x ); uy(t;x )) cos �(ux(t;x ); uy(t;x )) uxy(t;x )

+ cos2 �(ux(t;x ); uy(t;x )) uyy(t;x ); (3.5)

the geometric heat equation (3.2) can be re-written as

u(0;x ) = uo(x );

ut(t;x ) = AGHEu(t;x ); (3.6)

whereuo(x ) is the initial level set function.

In light of the foregoing development, a natural question which arises is:given a PDE which

governs a curve shortening flow, can we obtain a corresponding SDE associated with the underlying

diffusion?

The nonlinearity of GHE presents a significant challenge to find a global Ito diffusion which

explains the overall microscopical behavior of the system. Our approach here for solving such a
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nonlinear problem is, to explore the short-time behavior by linearizing around a known (nominal)

solution. The perturbation equations so obtained will be linear and hence an approximate solution

to the nonlinear problem can be obtained as the nominal value plus the perturbation term. Let us

denote byun(t;x ) the solution to Eq (3.6):

@un

@t
= sin2

�
tan�1(

uny
unx

)

�
unxx � sin

�
2 tan�1(

uny
unx

)

�
unxy + cos2

�
tan�1(

uny
unx

)

�
unyy;

and if we writeu(t;x ) as

u(t;x ) = un(t;x ) + � u(t;x );

and define the corresponding nominal angle�n(t;x ) = tan�1(
uny (t;x )

unx(t;x )), we get a linearized version

of the geometric heat equation around a nominal value:

@u(t;x )

@t
� AGHElinu(t;x )

= sin2(�n(x )) uxx(t;x )� sin(2�n(x )) uxy(t;x ) + cos2(�n(x )) uyy(t;x )

+ c(x )(�uny (x ) ux(t;x ) + unx(x ) uy(t;x )); (3.7)

wherec(x ) = 1
(unx(x ))2+(uny (x ))2

�
sin(2�n(x ))(unxx(x )� unyy(x ))� cos(2�n(x ))2unxy(x )

�
(see

Appendix A for details of this derivation).

In light of this, we can proceed to state the following:

Proposition 1 The right hand side of the linear PDE in Eq. (3.7) is the generator of the following

Ito diffusion satisfying the SDE

0@ dX (1)(t)

dX (2)(t)

1A = c(X (t))

0@ �uny (X (t))

unx(X (t))

1Adt+
p
2

0@ � sin �n(X (t))

cos �n(X (t))

1AdB(t):

(3.8)
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Proof 1 The operatorAGHElin in Eq. (3.7) is first re-written as,

AGHElin = b T (X ) �r +
1

2
� (X )� T (X ) �H

= c(X )

0@ �uny (X )

unx(X )

1AT

�
0@ @

@x

@
@y

1A
+

0@ sin2 �n(X ) � sin �n(X ) cos �n(X )

� sin �n(X ) cos �n(X ) cos2 �n(X )

1A�H;

whereH is a Hessian operator and� is a Hadamard product. The factorization of1
2��

T leads to

� (X ) =
p
2

0@ � sin �n(X )

cos �n(X )

1A and by identification, b (X ) = c(X )

0@ �uny (X )

unx(X )

1A :

Given the functionsb (X (t)), and� (X (t)), we come up with a pair of processes(X (t); B(t))

such that the SDE in Eq. (3.8) holds. In this case, the solutionX (t) is called a weak solution, as

it does not specify beforehand the explicit representation of the white noise, i.e. the versionB(t) of

the Brownian motion is not given in advance.

Both the drift and diffusion coefficient vectors of this SDE are in the tangent direction of our

level curves, which helps us interpret it as a 1-dimensional Ito diffusion on the instantaneous tangent

directionT (unx(t); u
n
y (t)). A differentiability assumption onu(t;x )

lim
Æt!0

u(t+ Æt;x )� u(t;x )

Æt
=

@u(t;x )

@t
� AGHElinu(t;x )

is sufficient for a short-time existence of the linearized PDE version of the nonlinear geometric heat

equation.

Using Kolmogorov’s theorem cited in Section 3.3.1, and assuming thatu(t;x ) and its deriva-

tives are “sufficiently regular” (Lipschitz properties), starting at each timet, the diffusionX (t) in

Eq. (3.8) is constructed for each time interval(t � Æt; t), and may be used to write a Backward

Kolmogorov Equation,

u(t� Æt;x ) = Efu(t;X (t))=X (t� Æt) = x g;

as a mean value around each pixel dictated by the motion of the constructed diffusion process
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X (t). This equation can also be written in forward time (since in the small time stepÆt, the ap-

proximate constant-coefficient PDE gives rise to a time-homogeneous diffusionX (t)with b(X (t))

and� (X (t)) to give way to an averaging process in the tangent direction of a level curve in the

course of a forward evolution (i.e., estimate the new pixel value at timet as a mean value of two

neighboring pixel values on the tangent at time (t� Æt) (See Fig. 3.1) ).

t+ δ tt+ δ t(x( ), y( ))
(x(t), y(t))

t t + δ t

Figure 3.1: Illustration of averaging behaviour. Points of the zero-level set, i.e. initial contour
(X (t);Y(t)), at timet, is shown on the left. Those points whose sample realizations result in an
average value of zero at timet+Æt (u(t+Æt;x ) = Ex [u(X (t))] = 0) form the new contour(X (t+
Æt);Y(t + Æt)) (on the right).

This also leads us to infer that locally, we can write a valid diffusion for each time interval

(t� Æt; t),

dX (t) = T n(X (t)) (cn(X (t)) dt+
p
2 dB(t)) (3.9)

whereT n(X (t)) denotes the known tangent vector at timet, andcn(X (t)) is the known drift

coefficient at timet, which iscn = 1p
(unx)

2+(uny )
2

�
sin(2�n)(unxx � unyy)� cos(2�n)2unxy

�
. Apart

from a drift onT , i.e.,

dX (t) =
p
2 T n(X (t)) d ~B(t); (3.10)

the underlying particle motion can be interpreted as a Brownian Motion (BM) on a local frame in

the direction of the tangent. Since BM is an averaging process, this SDE explains that the geometric

heat equation smooths iso-intensity contours maximally. On a discrete lattice Brownian motion is

captured by a random walk with equally likely (i.e., prob. 1/2) displacements tou+T andu�T . The

latters are obtained by a bilinear interpolation aroundu (in x andy direction and along the tangent,

See Fig. 3.2).

u+

u
T

u
T0.5

0.5T

Figure 3.2: Symmetric random walk on the tangent direction, and corresponding interpolation on
square grid.
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As a result, we can write such an equation as

@u

@t
=

1

2
�T u ' u+T � u

2
+
u�T � u

2
; (3.11)

where�T is the Laplacian operator in a tangent directionT . Summing up, microscopic dynamics

of the system captured by the local diffusionX (t) lead to a new macroscopic description of the

scenario, i.e., the random walk obtained in terms of the macroscopic variableu(t;x ).

For simulation purposes, we use a level set methodology [111], which in an Eulerian framework

has an advantage of naturally handling topological changes on the level set function. A simulation

example where a “T” shape is evolved via a generator of a random walk in a tangent direction,

Eq (3.11), is shown in Fig. 3.3.

Figure 3.3: Generator of symmetric random walk on the tangent direction implemented on the level
set functionu(x; y) for a T shape. The tangent direction is estimated directly from the level set set

function :�T = tan�1
�
�ux
uy

�
The level set function is on a250 � 250 grid, Æt = 0:25.

Practical equivalence of GHE and random walk on the tangent direction is tested by several

shapes. Another illustrating simulation is shown in Figure 3.4.

Our neglecting the drift led to an unbiased random-walk on the tangential direction and is val-

idated by the simulation examples presented above, as the generator of symmetric random-walk

implementation results are in agreement with the geometric heat equation implementation. Theo-

retically, a stronger validation is due to Girsanov theorem (see [108]), which says that if we change

the drift coefficient of a given Ito process, then the law of this process does not change dramatically,

indeed, the trajectories of the process (distribution) change via the measure change on the trajecto-

ries. This theorem involving a change of measure provides us with a means of changing the mean of

the processX (t) we obtained in Eq. (3.9), particularly removing the drift and obtaining the process

in Eq. (3.10), where only the version of the Brownian motion changes.

This intuitively appealing interpretation of a particle/pixel motion in the process of a diffusion

is shown in the next section to be particularly useful and insightful for developing more general and
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Figure 3.4: Middle row: Generator of symmetric random walk onT is shown to produce similar
results with those in Bottom Row: Geometric Heat flow. The speeds of the two algorithms are
different. The level set function is on a191 � 221 grid, Æt = 0:25.

feature/shape adapted flows.

3.4 A New Class of Flows

The insight gained from the tangential Brownian motion on a curve together with the normal angle

�(t;x ), leads to the idea of constraining the Brownian motion at some specific orientation angles

at each pointx . A natural modification of the geometric heat equation, based upon the stochastic

framework presented in Section 3.3, is to construct an SDE weighted by a carefully chosen func-

tional h(�n), (h(:) 2 C1(Rn)) designed to capture specific features in an image, and we write

locally

dX (t) = T n(X (t)) (cn(X (t))h(�n(X (t))) dt+
p
2 h(�n(X (t))) dB(t)):

Here, again, neglecting the drift motion and concentrating on pure diffusion, the Brownian motion

in the tangent direction is being further constrained at some specific orientation values, i.e. at the

zeros of theh(�n) function,

dX (t) �
p
2 T n(X (t)) h(�n(X (t))) d ~B(t)): (3.12)

Constraining the diffusion of particles at points with specified orientations is aimed at extracting de-

sired features of a contour as it is being smoothed. Such models are generated by the following class
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of PDE’s, which directionally modify the geometric heat flow (3.2), and in this sense, generalize it

by making the local generator of the diffusion SDE (3.12) conceivably arbitrarily selective,

@u(t;x )

@t
= h2(�(t;x )) u��(t;x ): (3.13)

When applied to an image, this flow induces the following curve evolution on each iso-intensity

contourC
@C

@t
= h2(�)�N : (3.14)

3.4.1 Well-posedness of the generalized model

Proposition 2 The corresponding PDE’s (3.13) are well-posed.

Proof 2 The geometric heat equation which corresponds to the simplest case of this class with

h2(�(t;x )) = 1; 8t; 8x , has been shown to be well-posed, and its existence and uniqueness

properties may be found in [6, 31, 38]. The operator of the geometric heat equation is given by

L[u] = L[u]� @u

@t
= 0 (3.15)

where

L[u] =
2X
i;j

aij
@2u

@xi @xj
= sin2 � uxx � 2 sin � cos � uxy + cos2 � uyy; (3.16)

is the principal part of the operatorL. The matrix of coefficients[aij ] is positive semi-definite with

the eigen values 1 and 0. If we multiply this matrix by a positive function, it remains positive semi-

definite. Such elliptic-parabolic operators satisfy a maximum principle (see, for example, [119]).

In our case we multiply by a non-negative functionh2(�) which can be made strictly positive by

adding a very small number,� > 0,

[h2(�) + �]Lu > 0:

This results in a family of nonlinear parabolic equations each of which satisfies a strong maximum

principle. Our operator is obtained in the limit as�! 0.
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3.4.2 Polygon yielding diffusions

The geometric heat equation is a rotationally invariant flow which evolves, as mentioned earlier, any

shape into a circle [54]. It is the only rotationally invariant shape evolution in Euclidean space. If

we wish to capture more general shapes (triangles, squares, etc. . . ) it is only then natural to consider

flows which are not rotationally invariant. Such a class is given by the form (3.14) whenh(�) is

chosen to be other than a constant. If we are particularly interested in polygons, we may consider

periodic functions (whose periodicity is dictated by the desired number of vertices) such as

h(�) =

8<: cos (n�)

sin (n�);
(3.17)

leading to curve evolution equations of the form

@C

@t
= cos2(n�)�N or

@C

@t
= sin2(n�)�N : (3.18)

If we apply (3.18) to a convex shape, there will be2n points on the curve which do not diffuse

(corresponding to the zeros ofcos(n�) or sin(n�)) at equally separated rotations of the unit normal

N . As the unit normal moves further and further away from these angles, the diffusion increases.

It hence makes sense to expect a curve to develop vertices (points of maximal curvature) at these

points.

Lemma 1 The angle of a unit normal does not change at points where the chosen functionh2(�)

vanishes. Those points, in turn, remain fixed for a short-time, and their speed remains at zero.

Proof 3 Assume that a family of curvesC (t; p), wherep is any parameter along the curve, evolves

according to the evolution equation

@C

@t
= �(t; p)T + �(t; p)N (3.19)

The evolution equation for the angle of the unit normal is given in [76] as

@�

@t
=
�1
g

[�p � ��g] (3.20)

whereg = jjC pjj =
q
X 2
p + Y2

p is the length along the curve (metric). If we consider the case

� = 0 and� = �h2(�)� (following the convention used by the authors in [76]), which corresponds
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to the form of the deformation we proposed, the orientation evolution is governed by

@�

@t
=

1

g
[(h2(�) �)p]

=
1

g
f2 h(�) (h(�))p �+ h2(�) �pg

=
1

g
h(�) f2 (h(�))p �+ h(�) �pg (3.21)

Notice that@�@t = 0 for those points at whichh(�) = 0.

We note that in [76], the orientation of a curve is defined as the angle subtended by the tangent

and the x-axis, whereas here we define� as the angle subtended by the normal and the x-axis. There

is, however, a complete equivalence in so far as the evolution equation of the angle� is concerned.

In light of the above development, we can thus state that the zeros of the functionh(�) lead to

fixed end points of curve segments. Fixing two end points, saya1 anda2 , we examine the evolution

of curvature, whose general form is given by (in [76])

@�

@t
= �@2�

@s2
+ �

@�

@s
� ��2;

wheres is the arc-length parameter along the curve. When substituting� = 0 and� = �h2(�)�
into this equation, we have

@�

@t
= [h2(�)�]ss + h2(�)�3

@�

@t
= [(h2(�))ss�+ 2(h2(�))s�s + h2(�)�ss] + h2(�)�3

@�

@t
= h2(�) �ss| {z }

diffusion term

+h2(�) �3 + (h2(�))ss �+ 2(h2(�))s �s| {z }
reaction term

This clearly demonstrates that a regularizing diffusion takes place, since the multiplicative factor

h2(�) never becomes negative (which would result in an ill-posed backward diffusion). In addition,

we have the reaction term which is composed of functions of�, �3, and�s.

We have hence shown that with fixed end points, a particular curve segment subject to the new

evolution equation for the curvature shown above, results in a straight line as a final solution.

Now, we can state a theorem where we put our argument of convergence to regular polygons.

Theorem 1 A convex curveC subject to the evolutionC t = h2(�)�N will converge to anM -

sided, regular polygon whoseM vertices will be formed at those vanishing points of the function
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h2(�).

The proof of this theorem can be completed using the arc-length evolution equation

@L(C )

@t
= �

Z a2

a1

�2h2(�)ds;

whereds denotes the incremental arclength ofC . Since the integrand is strictly positive, we see

that a curve will continue to shrink until curvature vanishes, that is the curve segment converges

to a straight line between the end pointsa1 anda2. This, in conjunction with the above lemma

completes the proof of the theorem.1

3.5 Experimental Results

3.5.1 Examples in Polygonization

To substantiate the stated theorem, and to intuitively illustrate our flows, we next present simulation

results. In our experiments with contours, we use the narrowband implementation of the level

set method developed in [2]. The time step is,Æt = 0:2. Starting with a circular shape, the flow

C t = h2(�)�N evolves it towards a specific polygon, i.e. it produces ann�gone shape depending

on the specific functionh(�). Several examples on morphing of a circle into different shapes are

shown in Fig. 3.5. This is one potential application of the proposed flows in computer graphics,

h(�) = sin(1:5�) h(�) = sin(2�) h(�) = sin(2:5�) h(�) = sin(4�)

Figure 3.5: Morphing of a circle into different shapes by the given flows is demonstrated.

where the ability to morph a shape into a known other shape with an efficient algorithm is required

for numerous applications. In addition to illustrating the propagation of the proposed flows in

several snapshots, Fig. 3.5 also provides a quantitative and an objective means for characterizing
1Note added in Proof: We recently found out per Dr. Osher at UCLA that Peng, Osher, Merriman and Zhao, [116],

have also independently proposed flows similar to those described in this thesis, albeit from a totally different perspective,
and with a convective trend.
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the performance of these algorithms in preserving corners. It can be observed that the position of

the desired feature locations, i.e. the orientations at which the vertices of the final polygon are

to be formed, are well preserved. There may inevitably be one-to-two pixel displacements due to

numerical implementation effects, on account of the finite precision of the computations and the

finite resolution of the grid (which affects almost all image processing algorithms).

The flows are also applied to a variety of convex shapes shown in part (a) of each figure: Fig. 3.6

and Fig. 3.7. In Fig. 3.6, the shapes in part (b) were obtained by usingh2(�) = cos2 (2�) via the

following curve evolution

C t = cos2(2�)�N ; (3.22)

while the shapes in part (c) were obtained usingh2(�) = sin2 (2�). In both cases, we expect to

obtain four-sided and regular polygons. The zeros ofcos(2�) and the zeros ofsin(2�) are however

45 degrees out of phase. As such, we see the evolved shapes in part (b) taking the form of a square,

whereas the evolved shapes in part (c) take the form of a diamond, corresponding to a 45 degree

rotation of the shapes in part (b). In Fig. 3.7, we see the effect of using different periods. The shapes

in part (b) are obtained usingC t = cos2(3�)�N , while the shapes in part (c) are obtained using

C t = sin2(1:5(� � �=2))�N . In the first case, we expect 6 vertices, and in the second case we

expect 3 vertices. Our expectations match the results shown in part (b) and (c), where we observe

hexagonal and triangular shapes, respectively.

(a) (b) (c)

Figure 3.6: (a) Initial set of shapes (b) FlowC t = cos2(2�)�N (c) FlowC t = sin2(2�)�N .

(a) (b) (c)

Figure 3.7: (a) Initial set of shapes (b)FlowC t = cos2(3�)�N , which tends to produce hexagons,
(c)FlowC t = sin2(1:5(� � �=2))�N , which tends to produce triangle-like shapes.

These two figures also suggest an important potential application of the proposed flows, namely

shape recognition. A typical scenario, would consist of an unknown shape, which is evolved with
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one of the polygonizing flows whose parameters are known a priori. The evolution which subse-

quently results in the least change in the input shape reveals the closest shape category the test shape

may belong to.

Recall that we may also apply these flows to the level sets of an image in the same manner that

the geometric heat equation may be applied. This gives rise to a family of anisotropic smoothing

filters which, unlike the geometric heat equation, are not rotationally invariant. This feature can

be useful in smoothing noisy images where corners and edges are priorly known to have certain

orientations. These diffusions are effected by PDE’s of the following form:

ut = h2(�)r �
� ru
kruk

�
kruk: (3.23)

Note that the trigonometric expressions we have considered forh2(�) can be written in terms of the

first derivatives ofu, for example

cos2(2�) =
(u2x � u2y)

2

(u2x + u2y)
2

and sin2(2�) =
(2uxuy)

2

(u2x + u2y)
2
;

allowing one to implement the PDE without having to compute the orientation of the unit normal

to each level curve. Note that these expressions involve only first order derivatives and therefore do

not alter the quasi-linear structure of these second order flows.

The intended application of the proposed flows in this chapter, i.e. the smoothing of structures

along the orientation of salient lines in both curves and images will be illustrated in the next two

subsections, respectively.

3.5.2 Examples in Feature-Preservation

Feature-preserving properties as well as polygonal approximation properties of the proposed flows

will be demonstrated in this section. We illustrate the idea of capturing different polygonal features

of shapes by our proposed flows on the following examples.

The first example is a “chef” shape with both round and polygonal features as shown in Fig. 3.8.

The geometric heat flowC t = �N , (n = 0), evolves these features into circles as shown in the

second row of Fig. 3.8 for time pointst = 40; 80; 160. Particularly, att = 160, most parts of

the shape turns into incomprehensible blob-like structures. In contrast to this, polygonal features

of the chef like his nose, and tray, are preserved by the flowC t = sin2(2�)�N , (n = 2), which
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favors diamond-like structures (see third row of Fig. 3.8 fort = 40; 80; 160). Similarly, the flow

C t = cos2(4�)�N , (n = 4), favors octagonal features as shown on the fourth row of Fig. 3.8,

which is observed at chef’s hat at all time pointst = 40; 80; 160. The regularity of these flows is

readily observed through the smoothness of the resulting shapes. When we view each row from left

to right, we observe a progression from finer to coarser scale. The scale-spaces produced by our

modified flows in the last two rows are visually more pleasing since corners are preserved, whereas

in the row above we see them smoothed away by the pure geometric heat flow.

Actual Shape

n=0

n=2

n=4

t=40 t=80 t=160

Figure 3.8: Each row corresponds to a curve evolution method with different n,1st row:C t = �N ,
2nd row: C t = sin2(2�)�N , 3rd row: C t = cos2(4�)�N .

The second shape example is a fish which contains some fine detail structures as well as coarse

features (Fig 3.9). The second row shows the result of the geometric heat flowC t = �N ,(n = 0),

which smoothes away not only fine features but some coarse features as well (the fins for example).

The results of the flow,C t = cos2(2�)�N ,(n = 2), are shown in the third row of Fig 3.9. In
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this case, rectangular features are preserved for longer periods throughout the evolution. Finally,

the flow,C t = sin2(4�)�N , (n = 4), is depicted in the last row, preserving octagonal features as

shown in the nose and the dorsal fins.

Actual Shape

n=2

n=4

n=0

t=40 t=80 t=160

Figure 3.9: Each row corresponds to a curve evolution method with different n,1st row:C t = �N ,
2nd row: C t = cos2(2�)�N , 3rd row: C t = sin2(4�)�N .

In the third example, we start with a noisy shape at timet = 0 shown in Fig. 3.10. This shape is

evolved with the geometric heat flowC t = �N , (n = 0), the flowC t = sin2(1:5(� � �=2))�N ,

(n = 1:5), the flowC t = sin2(2�)�N , (n = 2), and the flowC t = cos2(2:5(� � �=2))�N ,

(n = 2:5), as shown in Fig. 3.10. The geometric heat flow at the top row quickly smoothes corners

of the shape out, and at coarser scales, the shape loses all of its features. The initial shape converges

to a circle in spite of the global feature of the plane being a polygonal shape. This motivates the

application of the geometric heat flow with asin2(n�) factor, where n=1.5, and whose weak limiting

shape is a triangle which intuitively matches the coarser form of the given plane shape. Similarly,

for n = 2 andn = 2:5, different features of the shape are preserved, and persist over a much longer

time period as can be observed from the column of shapes att = 400. Note that the geometric heat

flow result at the top quickly washes out any similarity to the actual shape, whereas the results of

the other three flows preserve the global shape as well as some finer details on the wings, the tail,

and the head part.
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3.5.3 Examples with Grayscale Images

The proposed flows may also be applied to images in a straightforward fashion. For the case

h2(�) = cos2(2�), all level sets of the image are driven to rectangles, thereby enhancing those

features in an image. Such features can be found in contemporary buildings where one example in

NCSU, Centennial Campus is shown in Fig.3.11(a). The part of the building image with an addi-

tive Gaussian noise is shown in Fig.3.11(b). The2nd row shows the results of the geometric heat

flow ut = u�� at t = 10; 20; 50. The noisy image att = 0 is smoothed out very quickly at the

expense of rounding off all the corners because the level sets of the image converge to circles. The

3rd row shows theut = cos2(2�)u�� flow results at the same time pointst = 10; 20; 50. Since

the diffusion is constrained in order to drive image level sets to rectangles, the removal of noise is

slower. However, the rectangular features still nicely appear after noise removal (see the image on

the right), making it worthwhile to slow down the denoising effect of the geometric heat flow as

deemed appropriate.

In Fig. 3.12, an experiment involving diamond-like shapes in the image taken from a poster on a

wall is shown. In the middle row, rounding effects on diamond shapes performed by the geometric

heat flow are clearly observed during the evolution of this image. The proposed flow, shown in

the bottom row, takes the formut = sin2(2�)u�� for this particular shape, and particularly adapted

to carrying out a shape-based smoothing which takes place at the boundaries of the diamonds.

The slight blurring effect on the picture at continued application however is due to the interaction

between consecutive level curves.

A photograph taken by pathfinder in mars, shown in Fig. 3.13, is argued to be a hexagon-shaped

structure on mars’ surface. The particular flow adapted to this shape is given byut = cos2(3�)u��,

and the resulting images at the second column of the figure demonstrate a better smoothing perfor-

mance at the boundaries of the hexagon when compared to the images in the first column processed

by the geometric heat equation. From low scales to very large scales, the hexagon-adapted flow

enhances and keeps on highlighting the related structure.

A noise contaminated Aerial image is shown in Fig. 3.14(a). The geometric heat equation (see

2nd row, t = 20; 40; 80) sweeps away the shape information of the important details such as the city

on the left bottom, the white bright rectangle on the right bottom, and the black feature at the top.

The three images resulting from theut = cos2(2�) u�� flow, are quite sharp at the edges between

both low and high contrast fields, therefore more useful in recognition of details as well as removing
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noise.

A last example is shown in Fig. 3.15, where windows and a roof of a section of a house are seen.

On the left column, the results of the geometric heat flowut = u�� at timest = 40; 80; 160, are

shown, and on the right those ofut = cos2(2�)u�� at similar time steps. The noise is successfully

removed by the geometric heat equation whose smearing effect on different regions into one another

is also slow, at a cost of a problematic rounding off of corners. At timet = 160 for the result on the

right bottom, approximately the same amount of noise as that of geometric heat equation att = 40

is removed, and in addition to that the corners are still well-preserved.

3.6 Conclusions

In this chapter, also in [141], we have formulated a local stochastic view of a nonlinear filtering

technique, namely the geometric heat equation. The theory of stochastic differential equations pro-

vides a microscopic view of a system, and through a local linearization of the nonlinear geometric

heat equation we have provided an alternative macroscopic view of this equation. We then mod-

ified this macroscopic description to propose new flows that vanish at pre-defined directions. We

showed that these flows, although rotationally non-invariant, are capable of smoothing along priorly

known orientations of salient lines in both curves and images, leading to preservation of polygonal

structures. In the context of curve evolutions, curves evolved with the new flows are morphed into

a limiting polygonal shape, this approach may hence be relevant to shape-morphing applications in

computer graphics. Another application of these polygonizing flows is in classification of a shape

after its filtering via a certain set of these flows, and its identification according to the outputs of

these different filters.

Our main idea of stopping the diffusion with a function of the normal angle�, has an important

characteristic thath(�) function should be periodic since the angle� lives on the unit circle. We have

presented in [140, 142], a variant of this idea where the modification of the geometric heat equation

is accounted by a function that depends on the unit normal angle difference between neighboring

points on the tangent line at a point of the curve. This also leads to a feature-driven smoothing

of curves, (with different characteristics than the flows presented in this chapter), which has been

used in filtering level sets of images, particularly of synthetic aperture radar imagery, and also in the

target recognition of the latter.
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Actual Shape

Noisy Shape

n=0

n=1.5

n=2

t=50 t=100 t=200 t=400

n=2.5

Figure 3.10: Each row corresponds to a curve evolution method with different n,1st row: C t =
�N , 2nd row: C t = sin2(1:5(� � �=2))�N , 3rd row: C t = sin2(2�)�N , 4th row:C t =
cos2(2:5(� � �=2))�N .
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(a) (b)

(c)

(d)

Figure 3.11: (a) Clean building image (b) noisy building image (c) Geometric heat flowut = u��
(left-right) t = 10; 20; 40 (d) Flowut = cos2(2�) u�� (left-right) t = 10; 20; 40.
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t=2 t=5 t=20t=10

Figure 3.12: (Top) Diamonds image (Middle row) Geometric heat flowut = u�� (Bottom row)
Flow ut = sin2(2�) u��.
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t=12.5

t=25

t=50

t=90

Figure 3.13: (Top) An image from mars pathfinder, (First column) Geometric heat flowut = u��,
(Second column) Flowut = cos2(3�) u��. (Image: Origin NASA, exposed by and courtesy of N.
Coombs & NPAAG 1998.)
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Figure 3.14: Top: Aerial image;2nd row: geometric heat flowut = u��, (left to right)t = 20; 40; 80;
3rd row: flow ut = cos2(2�)u��, (left to right) t = 20; 40; 80.
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Figure 3.15: Top: House; Left: Geometric heat flowut = u��, (top to bottom)t = 40; 80; 160;
Right: Flowut = cos2(2�) u��, (top to bottom)t = 40; 80; 160.
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Chapter 4

Unsupervised Texture Segmentation by

Information-Theoretic Active Polygons

This chapter introduces new ideas for image segmentation problem through new polygon-propagating

equations in the active contour framework. Furthermore, adoption of an information-theoretic cri-

terion as an energy functional of an active polygon is described for an unsupervised texture seg-

mentation purpose. An overview on the general segmentation problem was given in Chapter 2.3.

After briefly reviewing this literature in Section 4.1, an overview on texture analysis and modeling

is presented in Section 4.2, along with our motivations, strategy, and the advantages of pursuing an

active polygon model over adapting an active contour model. In Section 4.3, we derive the ODEs

to obtain motion equations for polygon vertices. In Section 4.4, we introduce Jensen-Shannon cri-

terion for evolution of a single contour and multiple contours with the goal of texture segmentation.

In Section 4.5, a novel polygon regularizer to avoid degeneracy during a polygon propagation is

introduced. To our knowledge, this type of global geometric regularizer has not been used even

in related spline-based active contour models. Results, conclusions and discussions are given in

Section 4.6.

4.1 Introduction

The problem of image segmentation refers to the partitioning of a given image domain into regions

which are distinct in some sense. These, in turn, are expected to correspond to meaningful parts of

objects in the image. Image segmentation is generally viewed as an essential first step in low level

vision and as providing a mechanism for an automatic analysis of image contents. Some important
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applications include automatic target recognition, remote sensing, robot vision and guidance, auto-

matic visual inspection in manufacturing processes, biomedical image analysis, tracking objects in

motion. Segmentation is generally based on first determining features which delineate and reliably

distinguish different regions. Some common features which discriminate the region characteristics

are intensity, color, and texture. Selection of a “good” criterion is critical to capturing and evaluating

the features which yield a partition of the image domain into distinct regions.

Earlier image segmentation methods were based on thresholding [112, 134] and on local filtering

techniques [22, 96, 97], which make use of local information, and rely on high image gradient values

to detect prominent boundaries between regions. This in turn makes them sensitive to noise and

affects the continuity of the edge contours as a result. Region growing techniques [100] partition an

image domain by merging regions according to some statistical criterion such as region variances,

but their disadvantage is that they often generate irregular boundaries [153]. Snake [70] and active

contour methods define energy functionals whose local minima comprise a set of solutions, e.g.

boundaries of regions. The two main streams of thought are as follows:

� Inspired by the celebrated geometric heat equation [54], which may be obtained as a gradient

descent flow of a Euclidean arc length, geometric active contour models [23, 25, 72, 93, 130],

were developed as gradient flows of a modified Euclidean arc length. A modifying weight

which is almost zero near edges, and almost one when it is far from the edges, can be chosen

to be inversely proportional to the magnitude of the image gradient. These models are hence

boundary-based, and are only sensitive to data near the curve (very local). This makes them

prone to noise variability and to initial contour placement.

� To overcome this problem, region-based active contours, which use both local and global

information were proposed [26, 27, 29, 121, 123, 149, 153]. These models mainly assume that

the image consists of a finite number of regions, that are characterized by a pre-determined

set of features or statistics such as means, and variances. An energy functional is constructed

to pull these statistics apart. One advantage over the geometric active contours is that there is

no need to calculate image gradients which are usually sensitive to noise, albeit at a cost of

additionally imposed assumptions on the image.

The popularity of these active contour models was particularly due to an efficient implementation

scheme via partial differential equations (PDEs), referred to as level set methods developed by Osher

and Sethian for propagating interfaces [111, 127].
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Global optimization approaches to image segmentation are based on energy functions minimiz-

ing different criteria such as Minimum Description Length (MDL) [87], and Bayesian [17]. Other

methods were more hybrid in nature, such as the Region Competition method of Zhu and Yuille

in [153], which adopt a generalized MDL criterion to essentially include the costs for coding the

intensity of each pixel inside a region according to a prespecified probability distribution whose

parameters are to be estimated. A region merging step is subsequently carried out while ensuring

a decreasing total energy. A well-known mathematical model proposed by Mumford-Shah [103]

combined a boundary extraction goal via an assumption of approximating an image by smooth

functions in each region. Level-sets active contour implementation of this model have recently been

introduced in [28, 137]. In fact region-based active contour models mentioned in the previous group

can also be considered in this group, because their goal is also to extract boundaries of homogeneous

regions within an image by minimizing an energy functional.

A particularly powerful cue in visual perception is the set of textural features. Texture segmen-

tation, which is the task of parsing the image domain into a number of regions such that each region

has the same textural properties is a challenging problem [68, 94]. The problem of unsupervised

texture segmentation, which proceeds without a priori information about the textural characteristics

of objects in a given image, is particularly challenging and remains largely an open research issue

in computer vision. This along with its ubiquitous applications motivate further investigations into

developing refined and sophisticated methods to accurately reflect and discriminate textured regions

without supervision.

For textured images, defining a homogeneity measure is a mathematically challenging prob-

lem. We are going to propose a new texture segmentation approach which is an efficient improve-

ment over the existing class of methods. Specifically we propose an information-theoretic measure,

namely Jensen-Shannon divergence, which to our knowledge has not been used in the active contour

framework, and seeks to distinguish and separate probability density functions of various regions

in an image. This measure makes use of higher order statistics beyond mean and variance by a

computationally efficient manner which does not require histograms.

52



4.2 Motivation and Previous Work

4.2.1 Related Work

For texture analysis and modeling, mainly two groups of approaches and their combinations have

been developed:

� Visual system’s decomposition of retinal images into a set of subbands, has been the source

of inspiration for filtering techniques based on filterbanks of for instance Gaussians, and

Gabor functions to characterize different attributes of a texture at different orientations and

scales [68, 131]. Although multichannel filtering techniques have been shown to be efficient

at capturing local spatial features, problems such as optimal choices of filters, and fusion of

their outputs remain open.

� Statistical modeling approaches characterize texture images as arising from probability dis-

tributions on Markov Random Fields (MRF’s) [13, 39, 51, 94], and hence mainly rely on a

Markov property where each pixel is statistically dependent only on a certain set of neighbor-

ing pixels. The segmentation is achieved through a minimization of a maximum a posteriori

(MAP) criterion of the observed image. An advantage of these approaches is that they yield

the parameters of the underlying probability distribution which in turn affords one an ability

to synthesize texture images by sampling. Limitations of commonly used MRF models, on

the other hand, are due to the fact that only the first and second order statistics may tractably

be used, while, it is widely recognized that many textures are strongly non-Gaussian regard-

less of the neighborhood size [154]. An analytical probability density for modeling clutter in

natural images was proposed in [55].

� Methods which attempt to unify the afore-mentioned approaches have recently received at-

tention. Zhu and Yuille [153] applied their model to texture segmentation where two lo-

cal orientations of texture elements obtained through a Gaussian filtering of image gradient

components are used as a multivariate texture image in their region competition model with

underlying multivariate Gaussian distributions.

Zhu, Wu, Mumford [154], also developed a probability model built on the texture features

extracted by a set of filters aimed at capturing the properties of the texture at multiple scales

and orientations. Their probability model is a maximum entropy distribution, which then

includes the whole marginal distribution in this sense, and is hence more expressive than
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classical MRF’s. This enables them to model non-Gaussian textures. We should however

note that one of their main goals is texture synthesis which is adifferent goal than ours,

which is a texture segmentation. This texture synthesis goal also bears a heavy computational

burden, which we mean to bypass in our proposed approach.

Paragios and Deriche [115], in a supervised texture segmentation problem, also combined a

filtering approach with a statistical view while accounting for boundary-based (geodesic) and

region-based active contour frameworks. For a region-based attraction of the active contour,

a posterior probability of each region with respect to the texture filter output image is used,

exactly in the same way as in [153], with an MDL criterion, which, as well-known may also be

stated as a MAP criterion. Their boundary module is a geodesic active contour model which

utilizes an estimated boundary probability model to capture texture boundaries (analogous to

capturing intensity boundaries with high image gradients). In contrast to our approach, this

method requires a prior knowledge on the existing textures in the given image, and hence

a pre-processing stage involving filter banks (e.g. Gabor), to estimate a Gaussian mixture

probability distribution representing these pre-defined textures.

4.2.2 Synopsis of Proposed Approach

Our overall objective of object (homogeneous region) delineation in an observed image is highly

motivated by classification and recognition applications. This in turn and in contrast to existing

active contours, motivates a parsimonious and revealing representation such as that based on land-

marks/vertices of an approximating polygon as we propose in this chapter. In addition to its parsi-

mony, this representation is expected to accurately capture the prevailing texture and account for it

in the course of the analysis.

Given an image, consisting of several differently textured and simply connected regions (or for

our particular interest, textured objects), an approximation of their contours whose delineation is

sensitive to their textural characteristics is achieved by adopting a polygonal model which we de-

velop in Section 4.3, and by way of an information-theoretic measure, which we explore in Section

4.4 for propagating polygons. Combining these two goals yields our information-theoretic-based

active polygon which is effective and appealing on account of its implicit inclusion of higher order

statistics of the region data and integrated along the edges.

To motivate our investigation, we begin with a simple example of a synthetic image of two dis-

tinct intensity regions where the limitation of an active contour is readily seen as a result of excessive
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Figure 4.1: Motivational example where a simple binary image containing a quadrilateral (at the
top) with additive uniform noise is to be segmented. Rows2-3-4 show a continuous active contour
propagation with small, medium, large regularization respectively. The first two pictures in each
column are the initial active contours on the image, and on a white background separately, and the
last two pictures show what can possibly be obtained best in the continuous case. On the last row,
an initial arbitrary active polygon (first two columns), is propagated successfully towards the target
region, and the resulting polygon has only four vertices shown on the fourth column.
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additive uniform noise, while a vertex-based polygonal evolution as will be described in detail eas-

ily captures the underlying object. This is illustrated in Fig.4.1. The essence of the active contour is

to propagate an initial continuous curve towards the boundaries between two regions via a gradient

descent flow of an energy functional with both image-based external energy, and a smoothness-

constrained internal energy. Most active contour models, however, require significant regularization

in the presence of significant noise in the image. With a little regularization on the continuous active

contour model, (first row), the curve weaves around noise, with a medium regularization, (second

row), still there is no way for an active contour to get out of local minima in this highly noisy case.

With a very large regularization, the curve starts to converge to the shape, but the shrinking effect

is too powerful, and the curve continues to shrink without sticking to the data, and eventually will

collapse to a point. These three cases illustrate the continuum of effects from small to large regu-

larization. We should note that this is based on a widely used arclength-based regularization, and

that bad effects such as corners being rounded off, and the shrinking effects although not as promi-

nent, will be seen in a similar way with rigidity terms (penalties on squared curvature). The contour

would again ignore the data, and converge to a circle regardless of the shape of the object. By

evolving an active polygon with a relatively small number of vertices, strong regularizing internal

forces are no longer necessary to keep the contour from “breaking-up”. A polygon laid on the same

noisy image in Fig.4.1 (fourth row), propagates towards the boundaries with a greater resilience to

noise, and results in a detection of the sharp corners. The target object is well-delineated, and the

resulting polygon has only four vertices, accurately located at the corners of the object. While our

introduced model is applied to a seemingly contrived simple example, nevertheless, illustrates the

propagation of an active polygon through noise free of cost of sharp corners as well as its adaptivity

and independence of initialization.

4.2.3 Strategy

To highlight our development strategy, we describe how the objectives stated at the outset may

be achieved while clearly noting key conceptual differences with previously proposed techniques.

The evolution of the vertices of a polygon according to an energy functional is clearly constrained

by their set membership to the polygon and yields a set of coupled ordinary differential equations

(ODEs) each corresponding to a particular vertex. We hasten to note here that our approach differs

in an essential way from marker particle methods [127], or earlier snakes [70], in that the number

of vertices of our active polygons is much smaller, and that the motion of vertices are obtained
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by integration of information over all edges rather than motion of individual particles. In marker

particle methods, vertices behave independently under the influence of image forces, and coupling

only comes from the internal forces. We note in addition that with our approach, these vertices

naturally end up on important features such as corners on the boundary of an object. Rather than

marker-particle based techniques, our approach is philosophically much more related to, but never-

theless quite different from, spline-based models, where the entire contour is represented by a few

control points, such as [16, 45]. To prevent degeneracy during motion of the vertices (e.g. edges

intersecting each other), we propose a global regularizer technique which uses electrostatics princi-

ples by viewing each edge of the polygon as a line of uniform charge. This particular point is also

of interest in its own right as it introduces a global geometric regularizer rather than local geometric

regularizers that have been popular.

To meet each of the objectives set out, we define an information-theoretic measure which, based

on the so-called Jensen-Shannon divergence as an energy functional unfolds the textural information

through the underlying probability distributions of the data, using easily computed image statistics.

The formulation of such an energy functional in conjunction with a polygonal probing tool is fol-

lowed by a gradient-based minimization procedure which evolves the vertices by way of a coupled

set of ODEs just mentioned.

Note that Jensen-Shannon divergence [90], with Shannon entropy as a specific case [36], is a

probabilistic difference measure, with properties of interest in various applications. For instance,

unlike most other divergence measures, it can be generalized to a finite number of probability distri-

butions, which makes it suitable to an image segmentation scenario with several target regions. For

an image registration application, a similar divergence measure, based on a Renyi entropy [36], was

proposed by [56, 58], referred to as a Jensen-Renyi divergence. Jensen-Shannon divergence was

also applied to edge detection on regular or texture images in [53] by measuring the probabilistic

differences between relative frequency of gray values in two halves of a small window that is slid

over an image. Since it was developed for edge detection purposes, the result of this method yields

unconnected edges, and contours, and requires further processing such as contour linking for a seg-

mentation purpose. It hence differs from our approach which aims at finding a solid segmentation

of objects in an image within a variational framework.

In contrast to Zhu and Yuille [153] for instance, our technique does not assume, for simplicity

or for any other purpose, an underlying Gaussian model for texture regions. Our approach is hence

statistically non-parametric, and image data drives the estimation of the divergence between the
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texture distributions as will be shown. A region-snake in [32], is developed for segmentation of

images with only two regions, a target region and a background region, which are assumed as

independent random variables, such an assertion, and particularly for optical images, required a

prewhitening on the image. For segmentation of images of other modalities, such as ultrasound

images and SAR images, authors in [33], and in contrast to our approach, assume particular prior

densities which have explicit expressions, and then make use of a MAP criterion minimized by an

iterative stochastic optimization via a polygon. The technique of Paragios and Deriche [115] was

developed for a supervised texture segmentation, which requires a full knowledge of existing texture

classes/regions, which may be multiply connected, thanks to the level-set implementation [111] of

the PDEs. The approach we propose differs and may be viewed as a more challenging task, i.e.

an unsupervised texture segmentation scenario, in which the only prior information is the number

of different classes/regions which are assumed to be simply connected due to our simple polygon-

moving ODEs.

Our approach in pursuing an active polygon model is further advocated next.

4.2.4 Advantages of Active Polygons over Active Contours

Active polygons enjoy some significant advantages and flexibility over existing techniques:

� A first advantage arises in texture segmentation. The system of ODEs integrate local image

speed functions along two adjacent polygon edges when computing motion of each vertex.

Thus, it turns local image measurements at points on the contour into global information,

as these local measurements are integrated along the polygon edges. This makes our algo-

rithm much more reliable and robust in capturing texture boundaries in contrast to continuous

curves which are local in scope. Region-based methods also use global information inside

and outside the curve, but their gradient flow incorporates local information, and pointwise

on the curve, and is hence not amenable to speed functions for capturing higher-order statis-

tics which can not be estimated from pointwise measurements, in any case.

� A reliable detection of sharp object corners is particularly important in recognition and classi-

fication of man-made objects, and the accurate performance of our algorithm is very accurate

with no rounding effects at such important feature points, sets it apart from the continuous

approaches.

� Emerging multimedia applications require targeted and specific data in large databases, which
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in turn entails a heavy demand for an efficient access and representation of visual objects in

a scene. An efficient description of an object starts with its contour representation, which

through a continuous curve requires a tremendous amount of information to be stored. If a

contour is represented by a small number of vertices, this representation may later be com-

pactly stored and provide a significant and informative amount of compression of the multi-

media content. There is a vast amount of literature on obtaining polygonal approximations

of continuous contours [42, 48, 66, 83]. The goal is often to reduce the amount of data (e.g.

complex figures in cartography, geographical maps), and polygons are powerful approxima-

tors of shapes for use in later recognition stages [77], such as shape matching, and shape

coding. Several techniques for shape coding such as [106, 151], entailed first extracting ob-

ject boundaries and subsequently finding a polygonal approximation of the extracted contour.

With goal of efficient compression, our technique, is hence advantageous in that it captures

in one shot, a polygonal representation of objects in an image avoiding a typically lengthy

search for meaningful locations, such as high curvature points, used in shape matching. The

polygonal representation of an object from an image is only as good as the segmentation of the

image. It is thus more efficient to invoke the polygonal representation directly in the course

of the image segmentation process rather than afterwards. In short, our approach connects the

final polygonal representation we wish to use directly to the image data.

� With a handful of vertices provided as a resulting object description, our method can ef-

ficiently be applied to visual image retrieval or indexing, and content-based description of

multimedia data which are the core functionalities of MPEG-7 standard [30] .

� Another advantage of using ODEs rather than PDEs is a more efficient implementation. In

the discretization, a significantly larger time step can be chosen to speed up the algorithm,

whereas the PDEs usually require very small time steps for stable numerical implementations,

particularly when strong regularizers, which are avoided by our model, are necessary. In

addition, the identification of the interior and the exterior of a polygon is much easier than a

continuous curve, thereby providing additional speed up in the calculations of statistics inside

and outside of the curve.

� A particularly interesting property of the proposed approach is that a stochastic component

may easily be incorporated, contrary to the continuous curve propagation by PDEs. One can

indeed add a random perturbation component to the deterministic ODE component, such as
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a standard Brownian motion with a certain variance, in order to make the evolution more

robust to noise effects which usually yield a convergence to a local extremum of the objective

functional.

� Finally, we incorporate a novel global regularizer to the vertex motion equations using elec-

trostatics principles. When the regularizer is the sole term acting on the polygon, it forces

the polygonal edges and vertices to remain apart as imposed by the electric field induced

at a vertex. We note that our proposed approach is to be distinguished from that of Bruck-

steinet.al [20], which, using a discrete form of curvature to account for only local geometry,

evolves a polygon in the absence of an image term with a different intended application. Our

global, rather than local, regularizer is more consistent in preserving local features such as

corners.

4.3 Active Polygons

The dynamical equation of an active contour, typically follows the construction of an energy func-

tional around a region which is subsequently minimized by a gradient descent flow. Our goal is to

design flows to move a polygon by its relatively small number of vertices rather than a continuous

active contour.

Let us consider a contour energy that consists of an integral inside and outside the active contour,

where the integrandf(x; y) consists of the functionf : R2 ! R. To explicitly invoke a contour

C : [a; b] � R ! R
2 around some regionR � R

2 , we use the divergence theorem to write an

integral over the interior of a curve as a contour integral

E(C ) =

ZZ
R
f(x; y) dx dy =

I
C =@R

hF ;N i ds;

whereN denotes the outward unit normal toC , ds the Euclidean arclength element, and where

F = (F 1; F 2) is chosen so thatr � F = f . In what follows we will letp 2 [a; b] denote a fixed

parameterization of the curve whereC (a) = C (b). We will indicate byv any variable whose

variation affects the geometry of the curve. In the case of a polygon,v will denote a Cartesian

coordinate of any vertex. In the case of a smooth curve,v will denote a curvilinear coordinate

which varies along the normal direction at any point on the curve but remains constant along the

curve itself. The key point, in either case, is thatv andp constitute independent variables. We now
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rewrite the contour integral in terms of the parameterp,

E(C ) =

Z b

a

hF ;N ikC pk dp =

Z b

a

hF ;J C pi dp;

where J =

24 0 1

�1 0

35, andN jjC pjj = J C p. In order to determine the gradient flow associated

with E, we compute the derivative with respect tov. After some manipulations,Ev can be obtained

as [150, 153]

Ev(C ) =

Z b

a
fhC v;J C pi dp: (4.1)

In the case of a smooth curveC , the variablev denotes, at each point on the curve, a coordinate

which varies in the normal direction to the curve. Thus, if we are considering geometric evolutions

@C
@t of the curve, we see from the final expression ofEv, that the gradient flow forC with respect

toE is given by
@C

@t
= fN : (4.2)

Proceeding along a similar but slightly modified line of thought, we consider a closed polygon

V as the contourC , and with a fixed number of verticesfV 1; ::;V ng = f(xi; yi); i = 1; : : : ng.
We may parameterizeC by p 2 [0; n] as

C (p;V ) = L(p� bpc;V bpc;V bpc+1) (4.3)

wherebpc denotes the largest integer which is not greater thanp, and whereL(t;A ;B ) = (1 �
t)A + tB parameterizes between 0 to 1 the line fromA to B with constant speed, (A andB

denote the end points of a polygon edge). Note that the indices ofV should be interpreted as

modulon so thatV 0 andV n denote the same vertex (recallC is a closed curve). Finally, note

thatC p is defined almost everywhere (wherep 6= bpc) by

C p(p;V ) = V bpc+1 � V bpc: (4.4)

Proposition 3 Using the above parameterizationC p(p;V ) in Eq. (4.1), we obtain the first varia-

tion of the energy functionalE as

Ev =

Z n

0
f
�
L(p� bpc;V bpc;V bpc+1)

� 

C v; J(V bpc+1 � V bpc)

�
dp; (4.5)

and the minimization ofE is achieved by a gradient descent flow given by a set of ODEs for each
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vertexVk; k = 1; :::; n, as(see Appendix B)

@V k

@t
=

Z 1

0
pf
�
L(p;V k�1;V k)

�
dpNk;k�1+

Z 1

0
(1� p)f

�
L(p;V k;V k+1)

�
dpNk+1;k; (4.6)

whereNk;k�1 (resp.Nk+1;k) denotes the outward unit normal of edge(V k�1�V k) (resp.(V k�
V k+1)).

Written for each vertex, these equations are a set of coupled ordinary differential equations to

be simultaneously solved. Intuitively, any of these equations may concisely be re-written as

@V k

@t
= ~fk;k�1N k;k�1 + ~fk+1;kN k+1;k (4.7)

integrates the information, which is obtained from image values along two adjacent edges(V k�1�
V k), and(V k � V k+1), combined with the global image statistics (depending on the functionf ),

into two overall speed functions~fk;k�1, and ~fk+1;k in order to move the vertexV k . This system of

ODEs hence effectively implements a coupled motion of all the vertices of a polygon. In addition,

this integration procedure, provides improved robustness to noise. Another advantage of the flow

in Eq.(4.6) is the reduction of the dimension of contour propagation problem from a theoretically

infinite one to roughly on the order of3�30 vertex points, depending on the complexity of an object

boundary. This also clearly highlights the differences mentioned earlier between active polygons

and marker particle methods. One may note the significantly reduced number of well separated

vertices which have to be propagated. In addition, the motion of each vertex being based on a

weighted combination of the unit normals only at the polygon’s edge points, implies that there is no

need for a unit normal to be defined at a vertex. As a result, the polygonal contour formed by these

vertex locations(V1; :::; Vn) need not be differentiable. A generic image-based term, indeed a speed

function f , can be used in the derived ODEs describing the motion of our active polygons, hence

making them quite flexible.

For illustration, we apply our active polygon model in Eq.(4.6) to an image using simple mean

statistics for the foreground and the background. For a given image, with a simple triangle shape

as the target, the propagation of an active polygon with different initializations toward the target

shape are shown in each row of Fig. 4.2. The edges of the active polygon align themselves along

the edges of the target object, with the influence of the weights determined by the data term, i.e. the

two weighted integrals along two neighboring sides at each vertex. The result of our algorithm for
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Figure 4.2: We demonstrate flow (4.6) for two different initial active polygons.

two different initializations, given at the right of each row, is indeed the location of3 vertices of the

target triangle. Implementation issues along with the initialization are discussed in Section 4.6.1.

4.4 An Information-Theoretic Criterion

It is commonly assumed in region-based active contours that an image is piecewise constant. Sev-

eral techniques based on utilizing the first and second order statistics have been proposed. While

these techniques are quite adequate for Gaussian data, they are highly insufficient to capture the un-

derlying information in non-Gaussian data which include almost all textures. Towards that end, we

use an information theoretic measure which not only captures the higher order information of non-

Gaussian data, but provides a probabilistic disparity measure amongN data populations. Hence, we

consider a decision problem withN classesc1; : : : ; cN with prior probabilities,a = (a1; : : : ; aN )

such that
PN

i=1 ai = 1. Based on the Shannon entropyH, the so-called generalized Jensen-Shannon

divergence [90] amongN probability densities is

JSa = H

 
NX
i=1

aipi(�)

!
�

NX
i=1

aiH(pi(�)) (4.8)

wherepi(�) denotes the probability density of theith class in a region. One of the major features of

the Jensen-Shannon divergence is that different weightsai may be assigned to the relevant distribu-
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tions according to their importance.

Our ability to better capture the underlying statistics of regions using the entropy-based symmet-

ric divergence measure, suggests that this may play a key role in constructing an energy functional

whose optimization would yield a polygonal flow to well delineate differently textured regions. To

proceed, and for the sake of efficiency, we resort to a fast numerical estimation of the densities which

in turn facilitates the estimation of the entropies and hence of the divergence measure. We chose to

adopt a first order approximation of a density which achieves the maximum entropy solution, and

which, in turn, is used in approximating the entropy expression as proposed by Hyvarinen in [64].

On a region delineated by an active contour, we assume a scalar random variable (r.v.)� on a

given set of intensity values�, � : � � R ! R
+ , and the available information on the density of

the r.v.� is given by Z
�
p(�)Gj(�)d� = uj; for j = 1; ::;m; (4.9)

where the estimatesuj are the expectationsEfGj(� )g of m known independent functionsfGj(�)g
of � . Note that there is no model assumption for the random variable� , however, the distribution

which has the maximum entropy and which is also compatible with the measurements in Eq. (4.9)

is sought [36, 69]. This problem has been widely studied, and the form of the maximum entropy

distribution has been derived in [36, 69]. The densitypo(�) which satisfies the constraints (4.9) and

has maximum entropy among all such densities is of the formpo(�) = Be
Pm

j=1 bjGj(�) whereB

andbj are constants that are determined from the constraints. A first order approximation for this

maximum entropy density denoted byp̂(�), is given by [64]

p̂(�) = �(�)

0@1 +

mX
j=1

ujGj(�)

1A (4.10)

whereuj = EfGj(� )g, and�(�) is the standard Gaussian density�(�) = exp(��2=2)=p2�.

(Ef�g is the expectation of a random variable). In practice, theuj ’s are estimated as the corre-

sponding sample averages of theGj(�), i.e. we compute measurements in a regionR of an image

function I : R2 ! R by uj = 1
jRj

P
(x;y)2RGj(I(x; y)), wherejRj is the number of pixels in

R. A simple approximation of the entropy functional is subsequently found upon substituting the

approximate densitŷp(�) in

H(p̂(�)) = �
Z
�
p̂(�) log p̂(�)d� � H(�)� 1

2

mX
j=1

u2j ; (4.11)
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whereH(�) = 1
2 (1 + log(2�)) is the entropy of a standardized Gaussian variable (see [64] for

details). This result implies that a first order approximate maximum entropy of a given distribution

is found by calculating how far away it is from that of the standard Gaussian density.

4.4.1 Evolution of A Single Active Contour

With a single contour, the image domain
 � R
2 is split into two regions, namely a region inside

the contour, call itRu, and a region outside the contour,
nRu. Exploiting the approximation in

Eq. (4.11), we define an energy functional whose optimization yields the evolution of our active

contour based on a divergence measure defined in Eq. (4.8). The new energy functional for two

regions, is

JSa;2 = H(a1 p̂1(�) + a2 p̂2(�))� a1 H(p̂1(�))� a2 H(p̂2(�))

= �
Z
�
(a1 p̂1(�) + a2 p̂2(�)) log(a1 p̂1(�) + a2 p̂2(�))d�

+ a1

Z
�
p̂1(�) log(p̂1(�))d� + a2

Z
�
p̂2(�) log(p̂2(�))d�; (4.12)

Here the expressionH(a1 p̂1(�) + a2 p̂2(�)) may similarly toH(p1(�)) be approximated by sub-

stituting the approximate density expression in Eq.(4.10) to yield

H(a1 p̂1(�) + a2 p̂2(�)) � �
Z
�

0@a1 �(�)[1 + mX
j=1

ujGj(�)] + a2 �(�)[1 +

mX
j=1

vjGj(�)]

1A
� log

0@a1 �(�)[1 + mX
j=1

ujGj(�)] + a2 �(�)[1 +

mX
j=1

vjGj(�)]

1A d�

= �
Z
�
�(�)

0@1 +X
j

(a1 uj + a2 vj) Gj(�)

1A
� log �(�)

0@1 +X
j

(a1 uj + a2 vj) Gj(�)

1A d�

� H(�)� 1

2

mX
j=1

(a1 uj + a2 vj)
2: (4.13)

This shows that the same first order entropy approximation holds for the sum of densities. Denot-

ing measurements inside the contour asuj , and those outside asvj , for j = 1; ::;m, and using

the approximate entropy expressions (4.11), (4.13) in the energy functional Eq.(4.12), it may be
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approximated as

cJSa;2 = H(�)� 1

2

mX
j=1

(a1 uj + a2 vj)
2 � a1

0@H(�)� 1

2

X
j

u2j

1A� a2

0@H(�)� 1

2

X
j

v2j

1A
=

1

2

mX
j=1

��(a1 uj + a2 vj)
2 + a1 u

2
j + a2 v

2
j

�
=

1

2
a1 a2

mX
j=1

(uj � vj)
2 (4.14)

by noting thata1 + a2 = 1.

Note that on account of the higher order nature of the coefficientsuj andvj (i.e. higher order

than first and second moments), the proposed energy functional subsumes the previously proposed

techniques based on the first and second order statistics. Those may in fact be shown to be particular

cases of the above. This may also be justified by the fact that non-Gaussian densities may be

expanded and that their higher order cumulants reflect the degree (or the lack thereof) of skewness or

kurtosis of a density relative to a normal [71], henceG(�) = �3, andG(�) = �4, would be particular

choices for the measurement functionsGj . Other choices of these functions;G1(�) = �e��
2=2 as an

odd function to measure asymmetry (analogous to the third moment as a measure of skewness), and

G2(�) = j�j;or e��
2=2 as choices of even functions (analogous to the fourth moment as a measure

of sparsity, bimodality, relative to a Gaussian density), are given in [64, 65]. The idea behind using

expectations of odd and even functions of the data is thus similar to attempts to characterize a density

by the first few moments (usually order is less than 4). The choice of priorsai for each density is

explained next:

- If we assign constant priorsa1 anda2 (e.g. equal priorsa1 = a2 = 0:5) for both of the

regions, the constanta1a2=2 multiplying the energy functional in Eq. (4.14) has no effect in

terms of its first variation, and the gradient descent flow of the active contour that minimizes

the energy functionalE = �cJSa;2 = �1
2a1 a2

Pm
j=1(uj � vj)

2 may be obtained by taking

its first variation as

@C

@t
= rcJSa;2 = mX

j=1

(uj � vj)(ruj �rvj); (4.15)

where a continuous active contourC is utilized. As we have noted in the previous section,

the resulting flow can be directly applied to an active polygon instead of a continuous active
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contour. A measurement or a constraint on a region distribution;uj (resp.vj) for regionRu

(resp.Rv), is given by

uj =

R
Ru

Gj(I(x; y))dxdy

jRuj ; vj =

R

nRu

Gj(I(x; y))dxdy

jRvj : (4.16)

with jRuj =
R
Ru

dxdy, jRvj =
R

nRu

dxdy, and forj = 1; :::m different constraints. Then

the partial variation ofuj andvj in Eq.(4.16) w.r.tC is given by

rcuj = Gj(I)� uj
jRuj Nu; rc vj = �Gj(I)� vj

jRvj Nu; (4.17)

whereNu denotes the outward unit normal ofC (regionRu). Note that the outward unit

normal for the boundary of the outer region is�Nu.

The contour evolution is found by substituting Eqs.(4.17) into the gradient descent flow

Eq.(4.15):

@C u

@t
= fNu; where f =

mX
j=1

(uj � vj)

�
Gj(I(x; y)) � uj

jRuj +
Gj(I(x; y)) � vj

jRvj
�
:

(4.18)

We note that this is a generalized form of the data term of the flow proposed by Yezzi, Tsai,

and Willsky [149, 150]. In the above equation, the speedf of the contour along its normal

direction, can be directly used in the active polygon evolution equation derived in Eq. (4.6),

and restated in Eq. (4.7).

- On the other hand, in Eq. (4.14) we may assign variable weightsa1, anda2 that depend on

the regions. An intuitive choice would be to pick the ratio of the area of each region to the

total area of the image domain, sayA = jRuj + jRvj. This choice in practice implies taking

into account the number of pixels in each region, and would thus lead to a measure that is

normalized with respect to the areas of the regions. Lettinga1 = jRuj
A ; a2 = jRvj

A , we then

have to take into account in the derivation of the gradient descent flow, the first variations of

the coefficient terms as well:

@C

@t
= rcJSa;2 =

mX
j=1

1

2

jRujjRvj
A2

(2(uj � vj)(ruj �rvj))Nu

+
1

2

jRvj
A2

(uj � vj)
2Nu � 1

2

jRuj
A2

(uj � vj)
2Nu: (4.19)
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Figure 4.3: A continuous contour with a small regularization (top row), fails to capture as a whole
an object with a synthetic texture of vertical stripes , whereas with a large regularization (middle
row), rounds off the boundaries, and continues to shrink without sticking to the data. A polygonal
contour (bottom row) correctly segments the textured region.

After some manipulations (given in Appendix C), this gradient descent flow can be written as

@C

@t
= fNu; where f =

1

2A

mX
j=1

(uj � vj) ((Gj(I)� uj) + (Gj(I)� vj)) (4.20)

whose energy functional is indeed a generalized form of the external energy functional that

Chan and Vese proposed in [29]:

ECV =
1

2A

mX
j=1

Z
Ru

(Gj(I)� uj)
2dxdy +

Z
Rv

(Gj(I)� vj)
2dxdy: (4.21)

We also note here that in the presence of severe noise, as illustrated in Fig. 4.1 for a uniform

noise, the continuous contour ends up encircling small noisy regions, and its length grows. To

overcome such effects, a penalty on the length of an active contour is added to its energy func-

tional E =
RR

R fdxdy + �
H
C ds, where� � 0, ands is the arclength ofC (also explained in

Section 2.3.3). This second term brings a problematic trade-off which we avoid in active polygon

68



50 100 150 200 250

50

100

150

200

250

0 50 100 150 200 250
−250

−200

−150

−100

−50

0

Figure 4.4: An active contour (first row) fails to capture synthetic texture of vertical stripes even
after a Gabor filtering, whereas the active polygon (second row) captures the outline of the textured
region.

framework as will be explained next.

The advantage of propagating a polygon instead of a continuous curve, is demonstrated in

Fig.4.3, where a synthetic texture with vertical stripes is given. Obviously, thresholding for seg-

mentation will not work since one of the stripes has the same color as the background. A contin-

uous active contour propagation (first row of Fig.4.3) fails with a small regularization, i.e. small�

mentioned in the previous paragraph, because the curve dips down into the gaps of the stripes with

the same color as the background, and the individual bars are captured. With an increased amount

of regularization (higher�) on the continuous curve (second row of Fig.4.3), the curve remains in-

tact, however corners are rounded, and if one maintains the evolution, the important features will be

“missed”. We have not been successful at obtaining the appropriate tradeoff between the data term

and the regularizer in the continuous case to yield a satisfactory result. Active polygon propagation

in Eq.(4.6) withf in (4.20) (third row of Fig.4.3), accurately and consistently captures the target

shape. We also show in Fig.4.4, the Gabor-filtered version of the same synthetic textured object,

(tuned for vertical orientation). It, however, can be observed that the active contour still fails to

operate on the filtered texture, whereas the active polygon again successfully captures the outline of

the target region.
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4.4.2 Evolution of Multiple Active Contours

A nice property of the Jensen-Shannon divergence measure is that it may be generalized as a prob-

abilistic difference measure among any finite number of probability densities. Coupled propagation

equations for multiple active contours which delineate different regions on an image domain can

also be obtained as the gradient ascent flow of the JS divergence measure among the densities of

those regions (note that we are trying to maximize the distance among the densities of regions).

There is flexibility in the placement of the contours, which may delineate distinct or overlapping

regions without difficulty. We again derive the gradient flows generally with respect to continuous

contours. Figure 4.5 depicts two active contours whose inner regions are denoted byRu, andRv,

C

C
R

R

u

v

u

u

v

v

Ω \ (R U R )u vRw =

w

Figure 4.5: Ternary image regions.

and their common exterior byRw. The measurements, i.e. statistics, in these respective regions

are denoted byuj; vj ; wj ; j = 1; : : : ;m for m different measurements, with respective prior prob-

abilities a1; a2; a3 : a1 + a2 + a3 = 1. The energy functional for three densities can be written

as

JSa;3 = H

 
3X

i=1

aipi(�)

!
�

3X
i=1

aiH(pi(�))

� H(�)� 1

2

mX
j=1

(a1 uj + a2 vj + a3 wj)
2

� a1

0@H(�)� 1

2

X
j

u2j

1A� a2

0@H(�)� 1

2

X
j

v2j

1A� a3

0@H(�)� 1

2

X
j

w2
j

1A
cJSa;3 =

1

2

mX
j=1

�
a1 a2(uj � vj)

2 + a1 a3(uj � wj)
2 + a2 a3(vj �wj)

2
�

(4.22)

This form of energy functional may easily be extrapolated to three active contours, thus four
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regions with statisticsuj ; vj ; wj ; zj ,

cJSa;4 =
1

2

mX
j=1

a1 a2(uj � vj)
2 + a1 a3(uj � wj)

2 + a1 a4(uj � zj)
2

+ a2 a3(vj � wj)
2 + a2 a4(vj � zj)

2 + a3 a4(wj � zj)
2: (4.23)

The prior probabilities of each densitya1; : : : ; a4 may be selected in a variety of ways with the

simplest selection being the equal priors, i.e.ai = 0:25; i = 1; : : : ; 4. It is now straightforward to

approximate the JS functionalcJSa;N for N regions on the image domain. It may be observed that

the first-order approximations to both the densities and the corresponding entropies of the regions,

lead to an overall measure that computes a weighted sum of the divergence measures (i.e. distances

between their statistics) between all pairwise combinations of the regions.

Active contour evolutions for three regions using means and variances as statistics of each region

were derived from a totally different perspective by Yezzi, Tsai, and Willsky [149]. Their energy

functional was based on a geometric notion which maximized the area of a triangle formed by the

statistics of the three regions. Our energy functional on the other hand, is information-theoretic in

nature, and evaluates the distance among probability densities.

The ternary case entails the derivation of a gradient flow for each of the two active contours

C u, andC v. Taking the first variation of the energy functional in Eq.(4.22) w.r.t. the contourC u,

yields

rcucJSa;3 = mX
j=1

[a1 a2(uj�vj)+a1 a3(uj�wj)]rc uuj�[a1 a3(uj�wj)+a2 a3(vj�wj)]rcuwj

(4.24)

where we used the fact thatrcuvj = 0; 8j, sincevj are the statistics inside the contourC v which

do not depend on the contourC u.

The partial variation ofwj ’s requires more attention than that ofuj ’s andvj ’s since the statistic

wj is calculated over the common exterior of both contours whose boundary may not be smooth

when the two contours overlap. We exploit a a similar strategy given in [149] to express a statistic

in this third region using characteristic functions�u; �v over the regionsRu; Rv as

wj =

R

nRu

Gj(I)(1 � �v)dxdyR

nRu

(1� �v)dxdy

where the denominator may be renamed asjRwj. The variation ofwj w.r.t. C u can hence be
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obtained as

rcuwj = �Gj(I)� wj

jRwj (1� �v)Nu: (4.25)

The gradient descent flow of the contourC u which is equal torcucJSa;3 is thus obtained as

@C u

@t = fuNu, where

fu =

mX
j=1

[a1 a2(uj � vj) + a1 a3(uj � wj)]
Gj(I(x; y)) � uj

jRuj

+ [a1 a3(uj � wj) + a2 a3(vj � wj)]
Gj(I(x; y)) � wj

jRwj (1� �v): (4.26)

By similar arguments, one can writewj =

R

nRv

Gj(I)(1��u)dxdy
R

nRv

(1��u)dxdy
, where the denominator is

equal tojRwj, the variation ofwj w.r.tC v can be obtained as

rc vwj = �Gj(I)� wj

jRwj (1� �u)Nv: (4.27)

Then taking the first variation of the energy functional in Eq.(4.22) w.r.t. the contourC v, and

noting thatrc vuj = 0; 8j, leads to the gradient flow of the contourC v, @C v

@t = fvNv, where

fv =
mX
j=1

[�a1 a2(uj � vj) + a2 a3(vj � wj)]
Gj(I(x; y)) � vj

jRvj

+ [a1 a3(uj � wj) + a2 a3(vj � wj)]
Gj(I(x; y)) � wj

jRwj (1� �u): (4.28)

The two speed functionsfu andfv when inserted into Eq.(4.6) for two separate polygon propaga-

tions,C u andC v, result in ternary polygonal flows.

We illustrate in Figure 4.6, the ternary case for polygon propagations withfu andfv given in

Eq.(4.26) and Eq.(4.28). Although, the polygonal contoursC u andC v evolve separately, their

motion is coupled through the variables in the evolution equations that depend on each of the three

regions. Two contours move in such a way to maximize the approximate Jensen-Shannon diver-

gence among densities of the three regions, namelyRu: inside the contourC u; Rv: inside the

contourC v; Rw: the complement ofRu
S
Rv. Only means are used as the separating statistics,

(i.e., j = 1; G(x) = x), and the resulting two polygons are shown in Figure 4.6 (right). Hence, the

gain is again two-fold: segmentation of the targets, and their description in terms of a handful of

vertices are both achieved.
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Figure 4.6: Ternary flows using image forces withG(x) = x, are used to segment this simple
ternary image corrupted by Gaussian noise. Output of the algorithm shown on the right provides
only 5 vertex locations for the first object, and 3 vertex locations for the second object.

4.4.3 Active Contours for Vector-Valued Images

Up to now, we have derived the evolutions for grayscale (scalar intensity) images. These results

may be extended to vector-valued imagery (e.g. RGB (Red,Green,Blue), or other multi-spectral)

with nch number of different channels. The vector-valued imageI : R2 ! R
nch , can be expressed

in terms of its component functions :I = (I(x; y; 1); I(x; y; 2); : : : ; I(x; y; nch). The two speed

functions for the ternary case, may for instance, be computed as

fu =

nchX
l=1

mX
j=1

f[a1 a2(uj(l)� vj(l)) + a1 a3(uj(l)�wj(l))]
Gj(I(x; y; l)) � uj(l)

jRuj

+[ a1 a3(uj(l)� wj(l)) + a2 a3(vj(l)� wj(l))]
Gj(I(x; y; l)) � wj(l)

jRwj (1� �v)g;

fv =

nchX
l=1

mX
j=1

f[�a1 a2(uj(l)� vj(l)) + a2 a3(vj(l)� wj(l))]
Gj(I(x; y; l)) � vj(l)

jRv j

+[ a1 a3(uj(l)� wj(l)) + a2 a3(vj(l)� wj(l))]
Gj(I(x; y; l)) � wj(l)

jRwj (1� �u)g: (4.29)

4.5 A Global Polygon Regularizer

The flow of an active polygon may, under the sole influence of a data term, become undefined

(degenerate) under a variety of scenarios, e.g. when a vertex becomes infinitesimally close to a

non-neighbor edge of the polygon, or when two vertices or two edges come infinitesimally close to

each other at some point. We show such an example in Fig.4.7, in which propagation of an initial

polygon with5 vertices becomes degenerate, where the vertexV 4 approaches (then crosses) the

edge between verticesV 2 andV 3. As a solution to overcome this problem, we introduce a natural

regularizing term well adapted to an evolving polygon. Note that the regularizer we are about to
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Figure 4.7: We demonstrate that flow (4.6) may become degenerate without an additional constraint
on the motion of vertices.

propose is highly adapted to propagating polygons, and would not be computationally feasible for

smooth continuous contours. This regularization is accomplished by first viewing each edge of the

polygon as a finite line charge of uniform charge density. An electric fieldE , generated by a finite

uniform line charge, exerted on a point charge, is directed away from the test charge (we assume all

polygon edges have same charge polarity).

4.5.1 Electric force by a line charge:

Given a line charge or a rod of positive charge that extends from a generic pointa 2 R3 to b 2 R
3 ,

our goal is to calculate the electric field at a pointx 0 2 R
3 . Points are chosen inR3 , and using

electrostatics principles, we consequently derive these fields for them. The line charge is assumed

to be made up of differential point chargesdq. We need to compute the differential electric field

dE (x 0) exerted atx 0 by a chargedq at locationx = a + t(b � a ) which is on the rod (depicted

in Figure 4.8). As given by Coulomb’s law [138],dE (x0) is inversely proportional to the square

of the Euclidean distancejjx 0 � x jj2 betweenx andx 0, and its direction is given by the vector

(x 0 � x )=jjx 0 � x jj, i.e., dE (x 0) = (x 0 � x )=jjx 0 � x jj3dq. We assume a uniform charge

density� (a constant parameter) along the rod, hencedq = �dx. With the change of variable

x = a + t(b � a ), the differential amount of increase indx = Ldt, whereL = jjb � a jj is the

length of the rod extending froma to b .

By the principle of superposition, the total electric fieldE acting on point charge atx 0 due

to line charge(a ; b ), can be obtained by integrating the fields contributed by all differential point
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Figure 4.8: Calculation of electric force exerted by a line charge (a ; b ) at a pointx 0 on the polygon.

charges on the rod making up the linear charge distribution,

E ab(x
0) =

Z b
a

x 0 � x
jjx 0 � x jj3�dx

= kc L

Z 1

0

(x 0 � a ) + t(a � b )
jj(x 0 � a ) + t(a � b )jj3 dt: (4.30)

Note that the constant� is combined with the Coulomb’s constant into a constant parameter called

kc. After some manipulations (see Appendix D), the total electric fieldE ab(x
0) can be written in

terms of the two-vectorsx a = x 0 � a andx b = x 0 � b (depicted in Figure 4.8),

E ab(x
0) =

kc L

jjx ajj2jjx bjj2 � (x a � x b)2

� jjx bjj2x a � (x a � x b)x b

jjx bjj
+
jjx ajj2x b � (x a � x b)x a

jjx ajj
�
:

(4.31)

As shown in the previous section, a data term corresponding to a given vertex consists of an

integrated force along its two neighboring edges. In a similar way, an electric field exerted at a

vertex is also integrated along two neighboring edges. Evolution of a polygon vertexV k, due to

the total electric fieldE k integrated along two neighbor edges(V k�1;V k) and(V k;V k+1) may

then be written as

@V k

@t
=E k =

nX
j = 0

j 6= k; j 6= k � 1

Z 1

0
p EV j�1;V j

(pV k + (1� p)V k�1) dp

+
nX

j = 0

j 6= k; j 6= k + 1

Z 1

0
(1� p)EV j ;V j+1

((1 � p)V k + pV k+1)dp: (4.32)

This global, rather than local, geometric dependence makes this regularizer very different from
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Figure 4.9: Electrostatic regularizer in Eq.(4.32) computes the electric force at each vertex.

the ones used in the literature. The use of a global regularizer is more consistent with the desire

to capture local features that would otherwise not be captured. Thus, the additional and novel

geometric component of the polygon evolver,which induces global geometric dependence, provides

a regularization which both avoids the flow degeneracy as well as captures sharp corners of the

target shape without any shrinking or smoothing effects.

We demonstrate the polygon regularization capability of the electric force flow in Eq.(4.32) in

Figure 4.9 for two different polygons. The polygonal evolution with an electrostatic regularizer

force (plotted at each vertex) is shown at several snapshots in these figures. Note how the force

at each vertex is large in magnitude initially, and push a vertex away from the other edges of the

polygon. The magnitude of the electric force at each vertex decreases and edges remain well apart

which is exactly the effect we expect from the regularizer force. This force should be insignificant

when a vertex and its adjacent edges are not very close to most of the other edges, and should

become influential, even dominate when the vertex or its adjacent edges are very close to other

edges.

The addition of the regularizer term (4.32) to the motion equation of a vertex obtained in Eq.(4.6)
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Figure 4.10: The electric forces for an evolution are shown. Note the forces only become significant
when a vertex approaches another vertex or edge.

leads to the following modified vertex flow

@V k

@t
= �

�Z 1

0
pf
�
L(p;V k�1;V k)

�
dpNk;k�1

+

Z 1

0
(1� p)f

�
L(p;V k;V k+1)

�
dpNk+1;k

�
+ (1� �)E k: (4.33)

Here,�, a constant parameter to weight the influence of data term, and the electric field term, is

chosen as0:95 throughout the evolutions. The reason that we put such a heavy weight on the data

term is that the regularizer only kicks in very powerfully when degeneracy occurs, and it lets the

data term govern the evolution of the polygon during most of the evolution time.

In Figure 4.10 we demonstrate the use of flow (4.33) for the same initial active polygon with

5 vertices which has been shown to result in an ill-posed flow in the previous section in Figure

4.7. Here, snapshots of only the active polygon on the triangle shape image are given to better

appreciate the influence of the regularizer, and we show the electric force at each vertex during this

evolution. Note that the electric force at a vertex becomes significantly large when the vertex is

infinitesimally close to another edge in this figure. This event exactly keeps the polygon simple

during the evolution, and by the effect of the data term, the polygon converges to the target shape.
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4.6 Results and Conclusions

In this chapter, we have presented a new approach for image segmentation through polygon prop-

agating equations. In this section, by way of numerical experiments, we validate the effectiveness

and the usefulness of our technique.

4.6.1 Implementation Issues

The performance of most active contour algorithms depend on the initial conditions [153]. A partic-

ularly important question in carrying out such flows, is that of initializing the contour. Specifically

in our case, we need to specify the number of vertices, and their placement to start off the evolu-

tion of the polygon. For the active polygons, though, it is possible to circumvent this problem, and

speed up the convergence, by a simple approach which helps an initial active polygon adaptively

adjust to the number of vertices required for the description of the target shape. Towards that end,

we may initialize a very coarse polygon with a small number of vertices, e.g. a big rectangular or

circular polygon close to the image boundaries. While the initial polygon, usually with a very few

number of vertices, is propagating with both the image force and the regularizer force, new vertices

are periodically added and removed affording it a flexible motion towards the target region. A nat-

ural criterion to remove a vertex may for instance be based on the angle between its two adjacent

edges being close to either0, or �. This may be effected for a given vertexV k, with its adjacent

edgesA = (V k�1 � V k), andB = (V k+1 � V k), by computing the following inner product

A �B = jjAjjjjBjj cos(�AB), the�AB being the angle between the two vectors. One may therefore

check if

j cos(�AB)j = jA �B j
jjAjjjjBjj � 1; (4.34)

to determine the redundancy of a vertex. In either case, the vertexV k may simply be removed from

the vertex list, to finally yield a polygon properly enclosing the shape. During a vertex addition

period of an evolution, the magnitude of our image force along each edge of a polygon, i.e.D =R 1
0 jf(L(p;V k;V k+1))jdp, is computed, and a new vertex is added to a middle point of the edge

with the maximum value ofD. The intuition here is that the edges with higher image speeds are

closer to image structures that may require finer details.

For implementational purposes, the polygon structureP is a two-vector (2-D vector), and the

normals needed in the computation of Eq.(4.33) are computed asNk;k�1 = (�P (k; 1) + P (k �
1; 1); P (k; 0) � P (k � 1; 0))T . We also maintain a two-dimensional function which acts as
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an indicator function to show which pixel is inside or outside a polygon during the evolution to

facilitate computation of the statistics in the regions. Statistical calculations may be carried out

fast by computing the change in the position of each polygon edge, and appropriately adding or

subtracting the statistics computed in that difference region, which results in the motion of the edge,

which is a straight line, from one iteration to the next. Time step in the discretization of the ODE

is chosen large, e.g.Æt = 10, which indeed helps the model to escape various local minima of the

objective function. For a typical image of256 � 256 size, the relative speed of the active polygon

model is approximately twice that of an associated active contour model using the same data term.

As we mentioned, we may also add a random perturbation to our ODE model, a zero-mean

Gaussian r.v. with a variance that has a very minor effect when compared to the change in the image

term. This trivial perturbation changes the path of each evolution very slightly although the results

are very consistent as will be shown next.

4.6.2 Experimental Results

In this section, we demonstrate texture segmentation examples on natural texture images. Our

active polygon propagation model is in Eq.(4.33) with speed function in (4.20), and measurement

functionsG1(�) = �e��
2=2; G2(�) = e��

2=2; G3 = j�j; G4 = log(cosh(x)).

In the first example, a zebra on a grassy background constitutes of mainly two textured regions

(Fig.4.11). A generic rectangle, i.e. just four vertices, is initialized on the zebra image which is quite

challenging in terms of unsupervised texture segmentation. Snapshots from the polygon propagation

with the resulting segmentation in Fig.4.11, show that a zebra figure is very nicely captured.

Other natural texture examples include a monarch larvae and a monarch butterfly with generic

polygon initializations, a circle and a rectangle, are shown in Fig.4.12. In the same figure, an-

other arbitrary initialization on the same monarch picture, show that the target textured body of the

monarch is captured in both cases. In Fig.4.13, a fish whose body has a texture of stripes is cap-

tured by an active polygon. Similarly, a sea star on a textured rocky terrain, (Fig.4.14), a cheetah

figure (Fig.4.15 left), another cheetah in bushes (Fig.4.15 right), and a chunk of crystal (Fig.4.16)

are shown to demonstrate texture capturing capabilities of the active polygon model together with

the Jensen-Shannon criterion.

One of our goals was to apply our active polygon model to capture man-made object shapes. A

group of real airplane image experiments on each of which a generic circular polygon was initial-

ized, are shown in Fig.4.17. Our model successfully captures the plane shape in terms of a polygon,
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Figure 4.11: A zebra figure is captured by the active polygon model. A generic rectangular active
polygon close to image boundaries is initialized.
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Figure 4.12: A monarch larvae on a leaf is captured by an active polygon (left). Monarch butterfly
is captured in the two other columns with very different initalizations.
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Figure 4.13: A fish with a striped texture is captured.

Figure 4.14: A sea star embedded in a textured rocky background is captured.
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Figure 4.15: Left: Cheetah figure is captured by the active polygon. Right: A cheetah in bushes is
captured with an active polygon.

Figure 4.16: A natural crystal chunk is captured.
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which may be essential as an input to object recognition algorithms. An image of another man-made

object, a submarine, is shown in Fig.4.18.

Our active polygon technique is also suitable for document image segmentation because a doc-

ument page usually has two different kinds of texture, namely text and images, which have distinct

probability distributions. We show two examples of document segmentation: Fig.4.19 with a single

active polygon, and Fig.4.20 with two active polygons.

4.6.3 Conclusions

In this chapter, we have presented a polygon propagation model to capture particularly textured

objects in images. A new ODE model was developed to move polygon vertices. In addition, a

new global polygon regularizer was introduced to avoid degeneracy during polygon propagation.

Adaptation of a favorable divergence measure, the Jensen-Shannon divergence, as an integral form

(energy functional) of our ODEs lead to quite a powerful unsupervised texture segmentation tech-

nique which was validated by numerical results. The only assumption, which is valid in many

applications, in our model on the target image regions is, that they should be simply connected.

This is on account of most of the cases, whether in natural images as in zebra, or man-made object

images as in airplanes, texture regions are simply connected.
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Figure 4.17: Each airplane is captured by a handful of vertices.
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Figure 4.18: A submarine figure is captured by a handful of vertices.

Figure 4.19: An active polygon nicely segments a document image scanned from an article.
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Figure 4.20: Two active polygons capture text and image regions of a page from an article.
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Chapter 5

Applications of Active Polygons

Often, the goal oflow level visionis to extract significant features, e.g. boundaries of objects,

from an image, for a subsequent use in recognition by thehigh level visionstage. In this chapter,

we present applications tailored to the active polygon model that we have developed for extracting

compact descriptions of objects in an image. This representation is shown to be useful in higher

level applications. With a resulting handful of vertices for an object description, our method is

highly flexible, and may be efficiently applied toobject trackingin video sequences, andobject

recognitionin visual information retrieval context:

1. Video Object Tracking: We present a technique for object tracking in image sequences,

which makes the use of the active polygon framework developed in Chapter 4. In this ap-

proach, upon capturing boundaries of an object by a polygon from the first few frames of

the image sequence, motion segmentation of a polygonal object can be quickly achieved by

invoking only the vertex locations and the adjacent edges in the formulation. We carry out a

velocity field estimation at an active polygon vertex using the optical flow constraint on its

two adjacent edges. A spatial segmentation phase follows to further refine the object’s vertex

locations estimated by the optical flow. The advantage of our region-based active polygons

over continuous active contours in object tracking in video applications is highlighted by its

provision of a compact representation of object features, particularly for simply connected

target shapes, hence will be essential for their tracking [143].

2. Object Recognition: We present a technique for object recognition which makes use of the

compact shape representation extracted from an image by the active polygons. A signature

function computed from the polygonal representation is matched with the signatures of the
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model objects in a small library, via a cross-correlation operation. An intra-class retrieval

experiment, using photographs of model airplanes is carried out, and it is shown that active

polygons can be successfully applied to such problems.

These two applications are explored in the remainder of this Chapter.

5.1 Active Polygons for Object Tracking

5.1.1 Overview on Video Object Tracking Methods

Recent developments in digital technology have increased acquisition of digital video data, which

in turn have led to more applications in video processing. Video sequences provide additional

information about how scenes and objects change over time when compared to still images. The

problem of tracking moving objects remains of great research interest in computer vision on account

of various applications in video surveillance, monitoring, robotics, and video coding. For instance,

MPEG-4 video standard introduced video object plane concept, and a decomposition of sequences

into object planes with different motion parameters [73]. Video surveillance systems are needed in

traffic and highway monitoring, in law enforcement and security applications by banks, stores, and

parking lots. Algorithms for extracting and tracking over time moving objects in a video sequence

are hence of importance.

Tracking methods may be classified into two categories [114]: (i)Motion-based approaches,

which use motion segmentation of temporal image sequences by grouping moving regions over

time, and by estimating their motion models [10, 19, 99, 145]. This region tracking, not being

object-based is not well-adapted to the cases where a prior shape knowledge of the moving ob-

ject is provided. (ii)Model-based approachestrack objects using a template of the 3D object such

as 3D models in [50, 79, 91, 95, 120]. Usage of this high level semantic information, yields robust

algorithms at a high computational complexity cost.

Another classification of object tracking methods due to [114] is based on the type of infor-

mation that the tracking algorithm uses. Along these lines, tracking methods which exploit either

boundary-based information or region-based information, have been proposed:

1. Boundary-based methodsuse the boundary information along the object’s contour, and are

flexible because usually no object shape model and no motion model are required. However,

methods using snake models such as [12, 49, 67], employ parameterized snakes (such as B-
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splines), and constrain the motion by assuming certain motion models, e.g. rigid, or affine.

In [12], a contour’s placement in a subsequent frame is predicted by an iterative registration

process, where rigid objects, and rigid motion are assumed. In another tracking method with

snakes [89], the motion estimation step is skipped, and the snake position from any given

image frame is carried to the next frame. Other methods employ geodesic active contour

models [24] (which also assumes rigid motion and rigid objects), and [114].

2. Region-based methodssuch as [10, 99, 145] segment a temporal image sequence into re-

gions with different motions. Regions segmented from each frame by a motion segmentation

technique are matched to estimate motion parameters [9]. They usually employ parametric

motion models, and they are computationally more demanding than boundary-based tracking

methods because of the cost of matching regions.

Another tracking method, referred to as Geodesic Active Regions [113], incorporates both

boundary-based and region-based approaches. An affine motion model is assumed in this technique,

and its computational cost is significant on account of many different estimation steps involved.

Our goal is to build on the existing achievements, and the corresponding insight to develop a

simple and efficient boundary-based tracking algorithm well adapted to polygonal objects. This is

in effect an extension of our evolution models which use region-based data distributions to capture

polygonal object boundaries .

5.1.2 Motion Estimation

Motion of objects in 3D real world scene are projected onto 2D image plane, and this projected

motion is referred to as “apparent motion”, or “2D image motion”, or sometimes as “optical flow”,

which is to be estimated. In a time-varying image sequence,I(x; y; t) : [0; a]�[0; b]�[0; T ] ! R
+ ,

image motion may be described by a 2-D vector fieldV(x; y; t), which specifies the direction and

speed of the moving target at each point(x; y). The measurement of visual motion is equivalent

to computingV(x; y; t) from I(x; y; t) [60]. Estimating the velocity field remains an important

research topic in light of its ubiquitous presence in many applications and as reflected by the wealth

of previously proposed techniques.

The most popular group of motion estimation techniques are referred to asdifferential tech-

niques, and solve an optical flow equation which states that intensity or brightness of an image

remains constant with time. They use spatial and temporal derivatives of the image sequence in a
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gradient search, and sometimes referred to asgradient-based techniques. The basic assumption

that a point in the 3D shape, when projected onto the 2D image plane, has a constant intensity over

time, may be formulated as (x = (x; y)),

I(x ; t) � I(x + Æx ; t+ Æt)

whereÆx is the displacement of the local image region at(x ; t) after timeÆt. A first-order Taylor

series expansion on the right-hand-side yields

I(x ; t) = I(x ; t) +rI � Æx + ItÆt+O2

whereO2 denotes second and higher order derivatives. Dividing both sides of the equation byÆt,

and neglectingO2, theoptical flow constraint equation is obtained as

@I

@t
+rI � V = 0: (5.1)

This constraint is, however, not sufficient to solve for both components ofV (x ; t) = (u(x ; t); v(x ; t)),

and additional constraints on the velocity field are required to address the ill-posed nature of the

problem.

The direction of motion of an object boundaryB monitored through a small apertureA (small

with respect to the moving unit) (see Figure 5.1) can not be determined uniquely (known as the

aperture problem). Experimentally, it can be observed that when viewing the moving edgeB

through apertureA, it is not possible to determine whether the edge has moved towards the direction

c or directiond. The observation of the moving edge only allows for the detection and hence

computation of the velocity component normal to the edge (vector towardsn in Figure 5.1), with

the tangential component remaining undetectable. Uniquely determining the velocity field hence

requires more than a single measurement, and it necessitates a combination stage using the local

measurements [139]. This in turn means that computing the velocity field involves regularizing

constraints such as its smoothness and other variants.

Horn and Schunck, in their pioneering work [63], combined the optical flow constraint with a

global smoothness constraint on the velocity field to define an energy functional whose minimiza-

tion

argmin
u;v

Z


[(rI � V + It)

2 + �2(jjrujj2 + jjrvjj2)]dx ;
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Figure 5.1: The aperture problem: when viewing the moving edgeB through apertureA, it is not
possible to determine whether the edge has moved towards the directionc or directiond.

can be carried out by solving its gradient descent equations. A variation on this theme, would adopt

anL1 norm smoothness constraint, (in contrast to Horn-Schunck’sL2 norm), on the velocity com-

ponents, and was given in [82]. Lucas and Kanade, in contrast to Horn and Schunck’s regularization

based on post-smoothing, minimized a pre-smoothed optical constraint

Z
R
W 2(x )[rI(x ; t) � V + It(x ; t)]

2;

whereW (x ) denotes a window function that gives more weight to constraints near the center of

the neighborhoodR [92].

Imposing the regularizing smoothness constraint on the velocity over the whole image leads to

oversmoothed motion estimates at the discontinuity regions such as occlusion boundaries and edges.

Attempts to reduce the smoothing effects along steep edge gradients included modifications such as

incorporation of an oriented smoothness constraint by [105], or a directional smoothness constraint

in a multiresolution framework by [47]. Hildreth [60] proposed imposing the smoothness constraint

on the velocity field only along contours extracted from time-varying images. One advantage of

imposing smoothness constraint on the velocity field is that it allows for the analysis of general

classes of motion, i.e., it can account for the projected motion of 3D objects that move freely in

space, and deform over time [60].

Spatio-temporal energy-based methodsmake use of energy concentration in 3D spatio-temporal

frequency domain. A translating 2D image pattern transformed to the Fourier domain shows that

its velocity is a function of its spatio-temporal frequency [11]. A family of Gabor filters which
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simultaneously provide spatio-temporal and frequency localization, were used to estimate velocity

components from the image sequences [46, 59].

Correlation-based methodsestimate motion by correlating or by matching features such as

edges, or blocks of pixels between two consecutive frames [135], either as block matching in spatial

domain, or phase correlation in the frequency domain. Similarly, in another classification of motion

estimation techniques,token-matching schemes, first identify features such as edges, lines, blobs

or regions, and then measure motion by matching these features over time, and detecting their

changing positions [139]. There are alsomodel-based approachesto motion estimation, and they

use certain motion models. Much work has been done in motion estimation, and the interested

reader is referred to [11, 128, 133, 135] for a more compulsive literature.

5.1.3 Our Approach

The key idea in our proposed technique for video sequences is centered around tracking a relatively

few vertices together with their corresponding edges, which in turn yields a bookkeeping simplic-

ity and hence efficiency. For a specifically fast object tracking goal, it may be sufficient to only

measure certain properties of the vector fieldV (x; y; t), as a more complete and precise charac-

terization is rather redundant. Moreover, a very sparse set of motion measurements only along the

contour points, is required in lieu of a dense velocity field estimation over the whole image. A

velocity estimation is proposed in tandem with a fast spatial and motion segmentation which fol-

low the initial object delineation in the first few frames. We carry out a velocity field estimation

at an active polygon vertex using the optical flow constraint on its two adjacent edges. A spatial

segmentation phase follows for a further refinement of the object’s vertex locations estimated by the

optical flow. As discussed below, this approach presents several advantages over active contours in

video tracking; not the least of which is its feature parsimony which in turn, greatly simplifies any

tracking application.

Inspired by our spatial image segmentation on a still image, we achieve an incorporation of a

velocity field estimation in case of an image sequence as described next.
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5.1.4 Velocity Estimation At Vertices

Recall that our polygon propagating ODEs written for each vertexP k laid on a single image are

given by

@Pk

@t0
= u?

1;k

Z 1

0
pf
�
L(p;P k�1;P k)

�
dp

+ u?
2;k

Z 1

0
(1� p)f

�
L(p;P k;P k+1)

�
dp ; (5.2)

whereu?
1;k (resp. u?

2;k) denotes the outward unit normal of edge(P k�1 � P k) (resp. (P k �
P k+1)), andt0 denotes the evolution time for the differential equation. Our polygonal flows essen-

tially integrate spatial image information along two adjacent edges of a vertexPk to determine its

speed and direction. This is exactly the same idea we will use in the estimation of a velocity field at

a vertex of the active polygon laid on a time-varying image sequence. Our goal is to estimate the ve-

locity vector at each vertexPk using the two adjacent edges as shown in Fig. 5.2. The velocity field

u
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Figure 5.2: 2-D velocity field along two neighbor edges of a polygon vertex.

V (x; y) at each point on an edge may be represented asV (p) = v?(p)u?(p) + vT (p)u T (p),

whereu T (p) andu?(p) are unit vectors in the directions tangent and normal to an edge. The

optical flow constraint given by
@I

@t
+rI � V = 0; (5.3)

provides a way to estimate the componentv? of the velocity field directly from the time-varying

imageI(x; y; t). Once an active polygon locks onto a target polygonal object, the unit direction

vectorsu? andu T are also known immediately. A set of local measurements may easily be

obtained from the image brightness constraint

v?(x; y) = �It(x; y)=jjrI(x; y)jj; (5.4)
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which gives the magnitude of velocity field in the direction orthogonal to the local edge structure.

This initial pointwise measurement is preferred, because different parts of the moving object may

have different motions under general conditions such as unrestricted motion [139]. However, instan-

taneous measurements are insufficient to determine the motion, and the local measurements must

somehow be integrated for a better estimation of the velocity at a point. Recall that this was also

motivated by the aperture problem which showed the necessity of a combination stage over several

measurements on the image. For a fast estimation of a velocity at a polygon vertex, we utilize a

joint contribution from two edges of a vertex to infer the resultant motion at the vertex. Expecting

a sensitivity of such instantaneous normal velocity measurements to noise, we integrate them in a

weighted manner along two neighboring edges of a vertex to yield a more robust estimation. This

leads us to write a velocity estimation scheme at each vertex of an active polygon as

@P k

@t
= V k = u?

1;k

R 1
0 p v

?
�
L(p;P k�1;P k)

�
dpR 1

0 p dp

+ u?
2;k

R 1
0 (1� p) v?

�
L(p;P k;P k+1)

�
dpR 1

0 (1� p) dp
(5.5)

for k = 1; :::n. To introduce further robustness and to achieve more reliable estimates in the course

of computingv?, we may make use of smoother spatial derivatives (larger neighborhoods) [43, 62,

82].

To proceed with tracking of a polygonal object, we first apply the previously described segmen-

tation technique to initially delineate the moving object boundaries. Upon initialization, we assume

that an object of interest has been already outlined. Using Eq. (5.5), the velocity vector is estimated

from two imagesI(x; y; t) andI(x; y; t + 1), and is subsequently utilized to move the active poly-

gon’s handful of vertices to new locations on the next imageI(x; y; t + 1) in the sequence. The

ODE in Eq. (5.2) is then run for a short time for further refinement of the polygon delineation of the

moving object. We substantiate our approach by the tracking examples given in the next section.

5.1.5 Experimental Results

Object Tracking in IR (Infra Red) Video Sequences: A very suitable application of our object

tracking method is to target tracking in IR video sequences. In an IR image, a target usually appears

as a slightly bright or dark spot, most of the time in the form of a rough polygonal shape, when

compared to the background terrain. Our active polygons hence are perfectly suited to locking onto
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such targets and tracking them by the fast method we have introduced in the previous section.

We show in Fig. 5.3, and Fig. 5.4, several snapshots (progression from-left-to-right, top-bottom

in all figures) from two IR sequences respectively, in which the targets, a bright triangular shape

in Fig. 5.3, and a bright rectangular shape in Fig. 5.4, are successfully tracked by our technique.

The active polygon at each snapshot is depicted in yellow (white in b/w print-outs). Similarly, in

Fig. 5.5, a target which is probably a tank, is tracked as can be observed in the given snapshots, and

the final representation provided by the active polygon closely resembles a tank-like structure.

Here, it should be emphasized that the gain of our approach is again two-fold because in addition

to tracking, the shape of the tracked object is also available with a very compact description, as a

bonus feature.

In the next IR sequence example (Fig. 5.6), the tracker approaches gradually to a possible target

site, which appears as a bright region, and the polygon adapts to the outline of this target region

during tracking. As a last example to IR sequence tracking, Fig. 5.7 shows a quite noisy, cluttered

terrain, where again a target site appears as a dark spotted foreground region, highly embedded in

the background terrain clutter. The active polygon finds the roughly triangular outline of this site

during its successful tracking through the IR image sequence.

In the next example (Fig. 5.8), we tracked a toy airplane, a model of an F22, which is translated

on a conveyor belt. Note that once the active polygon locks onto the target object, it follows the

movement of the target unaffected by the camera movements such as zoom, pan, translation, and

rotation. Similarly, a model rocket which is about to be launched, is zoomed out by the camera in

Fig. 5.9, and is well tracked by our algorithm.

The last two tracking examples show a potential application of our technique to traffic moni-

toring where overhead cameras can give information on state of traffic, its density, the speed of the

vehicles, or abnormal situations on the road. In the first sequence, shown in Fig. 5.10, a fixed cam-

era has been mounted on a hilltop overviewing the Tryon Road, Raleigh, NC. A black automobile

entering the scene from the left, is successfully tracked by an active polygon until it leaves the scene

at the other end of the road hence out of the camera range. In another road sequence (of COST 211

project [1]), shown in Fig. 5.11, a truck approaching from the horizon on the road (left), is tracked

via an active polygon. Active polygons are successfully applied to tracking of motor vehicles, be-

cause the shapes of these man-made vehicles are polygonal, making the motion tracking through

vertices of a polygonal shape feasible and practical.
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Figure 5.3: Tracking of an IR image sequence I.
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Figure 5.4: Tracking of an IR image sequence II.
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Figure 5.5: Tracking of an IR image sequence III.
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Figure 5.6: Tracking of an IR image sequence IV.
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Figure 5.7: Tracking of another IR image sequence V.
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Figure 5.8: Tracking of a toy airplane moving on a conveyor belt (left-right, top-bottom).
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Figure 5.9: Tracking of a model rocket object.
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Figure 5.10: Tracking of the black automobile, entering the scene in the top left figure, and leaving
the scene in the bottom right figure (sequence provided by courtesy of Alper Unal, Civil Engineering
Dept, NCSU).

Figure 5.11: Tracking of a truck approaching from the far left (sequence of COST211 project).
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5.2 Object Recognition for Visual Information Retrieval

Visual information retrieval refers to the problem of retrieving images or image sequences from a

database, which are relevant to a query. Visual information retrieval problem arose as a new topic

of research on account of emerging multimedia applications, the availability of large image and

video archives, and one’s ability of sharing and distributing image/video data over large bandwidth

computer networks [15]. First generation visual information retrieval systems allowed querying by

strings or text with which capturing, for instance, perceptual elements of a shape or visual features

such as the outline of an object is difficult. In the new generation visual information retrieval

systems, a more vital description of visual content in agreement with human perception is adopted,

where image processing and computer vision techniques are essential for automatic extraction of

visual features like color, shape, and texture, from the image data.

The most recent member of the MPEG family, MPEG-7, specifies standardization of visual

descriptors (e.g. color, shape, texture, and motion), and description schemes (complex descriptions

specifying structure and semantic relationships among descriptors) of multimedia information to

allow efficient and fast content-based access and search. Development of visual retrieval systems is

hence not only gaining importance but becoming a very important problem as well.

For content-based image retrieval, particularly when objects in an image are of interest, object

recognition is a desirable goal, where a decision of whether or not an observed object corresponds

to a model in the database has to be made. In the traditional matching approaches, a comparison

between the query image and the database images is made, and an ordering according to the mea-

sured similarity is output. Selecting a similarity measure is very important, and depends on the

representation of perceptual features.

One of the most meaningful descriptions of an object is through its shape, and a simple and

efficient way for representing a shape is through a set of features extracted from the image. Features

such as the area, the elongatedness, the circularity, the orientation of the major axis describe global

shape characteristics, whereas features like corners, characteristic points on the boundary describe

local characteristics. Local features are less susceptible to noise due to a partial description they may

provide even in the presence of occlusions. Representing a shape through features that describe the

boundary of the object, either locally or globally, is a popular method. Considering set of all pixels

on the boundary is, however, not efficient as the number of points is usually too large. Reduction

of the dimension of the shape’s boundary representation by focusing on perceptually salient points
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(e.g. curvature extrema, corner points), is desirable. Approximating shapes through a polygonal

curve has previously been mentioned in shape retrieval techniques [98]. In [98], however, shapes

are already input as a polygon to the retrieval system, and polygonal approximation methodology

is not discussed in the case of a continuous input shape. A group of interest points, i.e. vertices,

form features which are encoded and collectively form a feature index for the query shape. Our

approach is taking rather than an indexing approach, a shape matching approach (will be explained

in the next subsection), in an image retrieval problem which is more involved than a shape retrieval

problem. Also in [98], a discrimination between object recognition problem and similar shape

retrieval problem has been made, and the former is defined to require an automatic recognition

of an unknown object (without user intervention), whereas the latter one is assumed to require

user assistance. We do not make such distinction between the two problems here, and assume an

automatic object recognition scenario in both cases.

Model-based Object Recognition using invariants

Existing object recognition systems, which usually address the problem of selecting the object

model that best matches the observed image, are referred to as model-based [3, 21, 84, 104]. In

these systems, the model objects, and the observed object are described by a set of feature points,

whose extraction is the first task to be completed. This is usually followed by a comparison where

a quantitative similarity between two shapes, is carried out by a distance measure between their de-

scriptions. The computed shape descriptions should be robust in the context of invariance property

so crucial to reliable object recognition.

Geometric invariants are properties of geometric configurations of features which remain un-

changed under a certain class of transformations. Geometric characteristics of objects are usually

distorted by a perspective projection of a scene from 3D space (real world) to a 2D image plane. For

instance, length is an invariant under rigid transform by rotation and translation, but it is changed

under a more general class of transformations like affine, or perspective transformation. Parallelism

is preserved under an affine transformation (e.g. a square is transformed to an arbitrary parallel-

ogram). On the other hand, collinearity of points is preserved under a projective transformation

(equivalent to perspective viewing) [44, 57]. Important invariants of affine transformation are par-

allel lines, ratio of lengths of parallel line segments, and ratio of areas. The most fundamental

invariant of a projective transformation is the cross ratio of four collinear points (a ratio of ratios of

lengths on a line).
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In model-based vision, affine geometry is often assumed because of the availability of a larger

number of invariant features, and the sufficiency of features necessary to uniquely compute model

pose under an affine projection rather than a perspective projection.

The crucial step of invariant-based recognition is in the reduction of the huge amount of in-

formation in an image to a small number of features which remains invariant to viewing angle,

occlusion, lighting conditions which are in turn quintessential to robustness.

There are two approaches to model-based object recognition using geometric invariants.

� Search-based matching approach:Invariant features are computed from the observed im-

age and are compared with pre-computed invariant features of all models in the database. This

exhaustive search technique is good for small databases, but problematic for large databases.

� Indexing approach: The derived transformation-invariant description is used as a key in

indexing a database of object models for recognition. In the so-called Geometric Hashing

technique [85], objects are represented as sets of geometric features such as points or lines,

and their geometric relations are encoded using minimal feature sets to index a hash table

prepared beforehand in a learning phase. In the recognition phase, a vote of the hits to entries

of the hash table by the feature indices of the observed image are tallied, and a database model

object that receives the maximum number of hits is chosen as the corresponding object model

for the queried unknown object. These methods are preferred for efficiently accessing very

large model databases.

Another classification in image retrieval problem can be made in terms of the homogeneity of

the database. Theinter-classretrieval problem involves distinguishing different classes of objects

like airplanes, animals, and cars. Theintra-class retrieval problem on the other hand involves

distinguishing objects from the same class, for instance airplane types F16 and F117. An intra-class

indexing application to digital fish databases is given in [4]. Inter-class retrieval may be handled

by comparing more global features of a shape, while intra-class retrieval, however, requires more

sophisticated approaches to feature comparison.

In the next subsection, we present an intra-class image retrieval study we have carried out as an

application of our active polygon model.
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Query Image 
Which

airplane class
it belongs to? 

Figure 5.12: Intra-class Image Retrieval Scenario.

5.2.1 Active Polygons for Intra-Class Image Retrieval

Complexity of an intra-class image retrieval problem arises from the fact that objects in a database,

e.g. different types of airplanes, and the query image are acquired from different viewing angles, dif-

ferent lighting and background conditions. We performed a recognition experiment on real images

as follows. The object database contains pictures of various airplane models. We took photographs

of the five different airplane models from a top view (shown in Fig. 5.12), and from different viewing

perspectives, and under different lighting conditions, given in Fig. 5.13. This scenario is depicted

in Fig. 5.12, where a query airplane image is input to the system, with a question of identifying its

membership model. The test image (i.e. the query), is viewed under different lighting and viewing

conditions. The key idea is to extract signature features from the test image, and search from the

database for the object model that best matches the query in terms of this signature.

Our basis for solving this problem is the active polygon framework we have proposed in Chapter

4. One of the important pre-processing steps for object recognition systems consists of automatically
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Figure 5.13: Set of airplane images under different conditions.

and systematically extracting features, or the interest points, from an image. We believe that this

issue is addressed unsatisfactorily at best in most of the previous object recognition work where

manual or supervised extraction was carried out. The active polygons we have developed, on the

other hand, can automatically extract important feature points of man-made objects from images. A

polygonal contour, for each airplane shape in an image is for instance extracted by our model.

Affine Invariant Parameterization of the Polygon Vertices

The extracted feature points (i.e. the ordered set of vertex points) are used in forming a signa-

ture from each shape, and in order to account for some degree of affine invariance, we choose to

reparameterize the vertex points by an affine invariant parameterization. An affine transform is a
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nonsingular linear transformation followed by a translation:~X = AX + B , where for a 2D

representation of shapes,A is a2� 2 matrix,X andB are2� 1 vectors.

A curveC (p) = (X(p); Y (p)),C : [a; b]! R
2 with parameterp 2 [a; b] can be reparameter-

ized to a new parameters via a metricg(p) so thats(p) =
R p
0 g(�)d�. The metricg(p) = jdet<

C ;C p > j first proposed in [7], is a first order affine invariant metric forB = 0, i.e. the translation

component of the affine transform is zero. Note that the affine transform on this metric can be given

by d~s = det< ~C ; ~C p > dp = det< AC ;AC p > dp = detA < C ;C p > dp, and the metric

is hence linear under an affine transform ifB = 0.

We note, using the divergence theorem, that this new parameterization

ta =
1

2

Z b

a
jXYp � Y Xpjdp

is indeed the the area enclosed by the contourC ,

Z
R
dxdy =

1

2

I
@R=C

<

0@ X

Y

1A ;

0@ Ys

�Xs

1A > ds:

Since the affine transform linearly changes the area with a constant scale detA , a normalization with

respect to the total enclosed area of the contour is possible. An initial translation of the polygon to

the affine center of mass, as a result, makes this parameterization completely affine invariant, i.e.

invariant to translation, rotation, scale, and shear.

In [7], a Fourier transform of the affine-invariant parameterized contour was taken, and invari-

ants were synthesized from the Fourier coefficients. Inspired by this approach, wavelet transform

coefficients of the affine-invariant parameterized contour were used as invariants in [3]. In pursuit

of exploiting the parsimonious representation provided by our active polygons, we resort to obtain a

signature that can be easily matched for a small number of vertices. The cumulative angle function,

or turning function [8], measures the angle between the counterclockwise tangent and thex-axis as

a function of the arc lengths. It increases with left-hand turns and decreases with right-hand turns.

For the polygonal contours that we obtain for each image, the turning function is piecewise constant,

with increases or decreases at the vertex points. Instead of using the standard turning function as

a signature, we propose to use, the turning function of the polygon versus the first order affine arc

length (i.e.measure the angle of the counterclockwise tangent as a function of the affine arc length).

Although the resulting signature is not completely affine invariant, it will be observed that such a
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Figure 5.14: An airplane from two different views.

parameterization gives better results in matching polygonal shapes with different poses.

In Figure 5.14, turning function signatures are shown for an airplane from two different views.

In light of the reduced number of vertices of our polygonal representation, one may carry out

a cross-correlation on the turning functions of the two polygons in order to account for the starting

point variability among shapes. Recall that cross-correlation is a measure of similarity between

two different data sets, computed by the sum of the products between the two data sets at different

lags. The advantage of our proposed model in using this signature becomes clear as the required

number of lags, i.e., the dimension of the cross-correlation function, is very small, (in fact equals

the minimum of the number of vertices of the two polygons). For each lagl, the normalized cross-

correlation, so-called the cross-correlation coefficient, between two signature functions,�1 and�2,

is defined as

cr(l) =

P
ta
[�1(ta)�Ef�1(ta)g][�2(ta � l)�Ef�2(ta)g]

fPta
[�1(ta)�Ef�1(ta)g]2 [

P
ta
�2(ta � l)�Ef�2(ta)g]2g0:5 : (5.6)

In Figure 5.15, the test image is an F117 whose polygonal representation is extracted by an

active polygon, and its signature is computed, and compared to the signatures of the airplanes in

the model image set by way of the cross-correlation coefficient. The model object whose signature

achieves a maximal cross-correlation with that of the test object’s is picked as a top match. The

consecutive matches are also ordered with respect to this criterion (Figure 5.16). It can be observed

110



Figure 5.15: A query (an F117) to the model image set, and the best match are shown.

that the top match is indeed the correct model object from the image set.

Another query image, an F16, and the corresponding retrieved object models from the data set

is shown in Figure 5.17 and Figure 5.18. The best matching model is an F16.

A Statistical Approach: We also carry out a statistical study when generating the signatures

before matching. Due to an inherent variability in real images, the extracted feature set may slightly

vary for different initial conditions of an active polygon. To account for this variability, we generated

random active polygon initializations on an image, and hence obtained several realizations of the

target shape in terms of its feature points (see eight different realizations of an F16 airplane in

Figure 5.19). An average signature over the signatures of these realizations may then be obtained,

after aligning the shapes by cross-correlating their turning functions vs. standard arc length which

is opted to be used in this experiment. The average turning function of the eight realizations in

Figure 5.19, computed in this way, is shown in Figure 5.20.

Two retrieval examples using the match over averaged turning functions are shown in Fig-

ure 5.21. The correct model from the data set is once again picked in both of the cases.

We note that the application of active polygons to an intra-class image retrieval problem pre-

sented above, requires a more thorough performance evaluation, with a larger database and extensive
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Figure 5.16: The next-to-top matches are shown for the test airplane in Fig. 5.15.

Figure 5.17: A query, which is an F16, to model image set, and a top match are shown.
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Figure 5.18: The next-to-top matches are shown for the test airplane in Fig. 5.17.

Figure 5.19: Outputs of several random initializations for F16 airplane.
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Figure 5.20: Average turning function versus arc length over eight different realizations shown in
Fig.5.19.

simulations. This study may be considered as part of a future research direction motivated by this

thesis.

5.3 Conclusions

In this chapter, we aimed at demonstrating the flexibility and potential uses of the active polygon

framework, developed in Chapter 4, in a varied set of applications in computer vision. First, we

presented an object tracking application, which provided a fast way of outlining a moving object

through time in a video sequence. An additional gain provided by our technique is the immediate

availability of the compact shape description of the tracked object. We also presented an experi-

mental study on applying active polygons to object recognition, which also clearly illustrated the

potential of our technique in such applications.
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(a)

(b)

Figure 5.21: A query, (a) F16, (b) F22, to model image set, and a top match using averaged turning
functions are shown.
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Chapter 6

Contributions and Future Research

In this chapter, contributions of this thesis, and the conclusions drawn from the associated research

work and the results are presented. Suggestions for future research directions related to this thesis

are provided.

6.1 Contributions of the Thesis

In this thesis, we have presented contributions in the development of new image processing algo-

rithms based on curve and polygon evolution models. In Chapter 1, the use of curve evolution

techniques for image processing are motivated, and then in Chapter 2, the background material

fundamental to the curve evolution concept is given as preliminaries.

6.1.1 Contributions to Curve Evolutions for Nonlinear Filtering

In Chapter 3, we described a new approach to curve and image smoothing through a new class of

curve evolution equations designed to preserve prescribed polygonal structures in an image while

removing noise. These curve evolutions which are obtained via a directional generalization of

the geometric heat equation that circularizes any closed curve, are applied to smooth noisy curves

without destroying their significant features on which a prior knowledge is assumed. A contribution

in conjunction with these flows is a local stochastic formulation of the geometric heat equation

providing an alternative microscopic/macroscopic view of this equation, whose insight led to pre-

set and stabilized polygonal approximations. The theoretical framework of the new class of curve

evolutions which leads to a nonlinear filtering along known salient structural directions in an image

constitutes the first contribution of this thesis. Additional contributions come from the availability
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of various applications besides image smoothing. We demonstrated that the designed flows have the

ability to morph an input shape into various other shapes, and thus constructed continuous shape

transformations have their potential use in shape analysis and shape recognition.

6.1.2 Contributions to Active Contours for Unsupervised Texture Segmentation

Chapter 4 introduced a novel variational framework for an unsupervised texture segmentation prob-

lem. The first contribution in this framework, is the new ordinary differential equation model that

moves polygon vertices, obtained as the gradient flow of a generic region-based energy functional

for an active contour. Under the new evolution model, the evolving contour is a polygon whose

every vertex is propagated by an overall speed function integrated along its two adjacent polygon

edges. This is a significant improvement over other snakes, geodesic active contours, and region-

based active contour techniques. The latter group of techniques which are closer to our model, fuse

global information inside and outside the curve with a pointwise local measurement, and is hence

not amenable to speed functions that try to capture higher-order statistical features present in most

of the textural variations in an image. The second contribution in this set-up is the definition of an

information-theoretic measure, based on the Jensen-Shannon divergence, which unfolds the textu-

ral information through the underlying probability distributions of the data, moreover using easily

computed statistics. Accounting for underlying distributions exactly in order to separate two differ-

ent textural regions in an image, although desirable, would involve estimation of densities possibly

through histograms, would hence be demanding in terms of computations. Utilizing an approxi-

mation of Shannon entropy in the definition of the Jensen-Shannon divergence, and in turn in the

cost functional, lead to a fast numerical scheme to estimate higher-order characteristics of a proba-

bility distribution with minimal effort. In addition, another advantage of adapting Jensen-Shannon

divergence as the energy functional of active contours is reflected by its ability of generalization

to propagating multiple active contours whose gradient descent equations are derived from a single

cost functional, hence leading to a new coupled set of active contour evolution equations. A third

contribution in the same active polygon set-up is the new polygon regularizer, which, in contrast

to other polygon evolvers, is global and uses a physical basis depending on electrostatics. This is

also a significantly new contribution to the field of computer vision in terms of curve evolutions.

These three ideas of Chapter 4 together result in a new active contour model, which is significantly

different from other snake and active contour methods, and which is successfully applied to more

general scenarios of images in terms of texture and to various computer vision applications.

117



6.1.3 Contributions to Computer Vision

Chapter 5 extended the contribution of Chapter 4 to time-varying image sequences for an object

tracking application. The additional contribution here is an efficient and simple tracking method-

ology which builds on the idea of tracking a relatively small number of vertices by computation

of a velocity field at a vertex along its two adjacent edges. We demonstrate through substantiating

examples, that the active polygon framework is easily adapted to this scenario. The efficiency of the

proposed tracking method comes from the sufficiency of a very sparse set of motion measurements.

The motion only along the polygon edges is used, and a coarse estimate at a vertex integrated in a

weighted manner the immediately available local measurements, i.e. the component of the velocity

orthogonal to an edge. An application to tracking targets in IR image sequences validates the use-

fulness of the technique. The flexibility of the active polygon framework is also demonstrated in its

successful application to an experimental object recognition scenario.

6.2 Future Research Directions

Several interesting research directions motivated by this thesis are discussed next.

6.2.1 Shape Prior on the Curve Evolution Model

In Chapter 3, the flows we designed incorporated a prior knowledge on the salient directions of

polygonal shapes whose preservation during smoothing is desired. The form of the functions,h(�)
used in the flows were trigonometric, and were based on the unit normal angle, i.e. the local ori-

entation of a point on the curve. They lead to simplen-gone shapes such as triangles, rectangles,

hexagons, and so on, on account of the shape prior being used. An open question is how to incorpo-

rate other and more general forms of shape priors, for instance global characteristics of a shape such

as its size, elongatedness, number of corners and so on. A related question is that through what kind

of local and global features, other than orientation, more general shape priors may be integrated by

way of the functions utilized in this model. We allude to such a direction in [140, 142], where a

variant of theh(�) functions presented in this thesis, was used on the basis of derivative of the local

orientation.
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6.2.2 A New Application for the Curve Evolution Model

In Chapter 3, we elaborated on the application of the new class of curve evolutions to image and

shape smoothing. Another interesting application, hence an interesting future research direction,

for these flows when considered as a continuous transformation of one shape into another, is in

computer vision and graphics. Morphing in computer graphics transforms the shape of graphical

objects such as 2D curves, regions, images, surfaces, and volumes. This may also be considered as

a powerful method for shape analysis, where the transformations required to deform one shape into

the other provide a way to classify the members of a given shape family.

6.2.3 A New Cost Functional for the Polygon Evolution Model

In Chapter 4, the polygon evolution models we have developed, form a new active contour frame-

work for texture segmentation problem. These models made use of a fast numerical estimation

scheme in computation of the Jensen-Shannon divergence, derived from a first-order approximation

of a probability density and the Shannon entropy. An avenue of future research would be to de-

fine cost functionals which better approximate the underlying probability distributions of regions,

or develop more efficient nonparametric estimation techniques of such measures. Adapting the

same divergence measure with a Renyi entropy [56] of regions, as a more general measure than the

Shannon entropy, would be an interesting investigation into understanding the gains that would be

achieved in this case.

6.2.4 Constraint on the Number of Vertices and a Shape Prior on the Polygon Evo-

lution Model

Polygon evolution models developed in Chapter 4, adaptively (by periodically adding and removing

vertices) conform to an adequate number of vertices that “minimally” define a target shape in an

image. The problem of adding a constraint on the choice of the number of vertices of the polygon

to the cost functional of the active contour, would be an interesting future research avenue. The

question of putting a penalty on the cost of adding more and more vertices, or a prior distribution

on the type of the polygon, its shape, and the number of vertices, and finally coding this prior

distribution by a minimum description length criterion would be a research direction that holds

promise.
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6.2.5 Topological Changes

The active polygon model developed in this thesis makes the assumption of simply connected re-

gions for the image segmentation problem. This assumption is not very restrictive, since in most of

the cases, whether in natural images as in zebra, or man-made object images as in airplanes (shown

in Chapter 4), texture regions are simply connected. An investigation in how to handle topological

changes, i.e. split and merge of a polygon, would be an improvement to capture multiply connected

target regions in an image for an extension to more general scenarios.

6.2.6 Further Extensions and Applications for Active Polygons

� Active polygon methodology is extended to an object tracking problem in Chapter 5.1. An

improved motion estimation, by using more than the measured orthogonal components of the

velocity along two adjacent edges for each vertex, by imposing for instance a smoothness

constraint on the velocity field along the contour. This would enhance the object tracking

methodology, possibly at a cost of slowing down the performance.

� Designing geometric invariants, fully affine invariant or projective invariant, suitable for the

output of the active polygon model would result in a full extension of the object recognition

application framework started in Chapter 5.2.
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Appendix A

Stochastic Formulation of a Geometric

Heat Equation

Let us denote byun(t;x ) the solution to Eq (3.6):
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Assumingf1(�; �; �); f2(�; �; �) and f3(�; �; �) are differentiable in their arguments, we can expand

f1(�; �; �) in Taylor series about(unx ; u
n
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xx), f2(�; �; �) about (unx; u
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If we assume that�u(t;x ) is small enough, we can neglect higher order terms and write a linear

approximation as
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Defining the corresponding nominal angle�n(t;x ) = tan�1(
uny (t;x )

unx(t;x )), and re-arranging the terms

of Eq. (A.3), we get the linearized version of the geometric heat equation around a nominal value:
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Appendix B

Derivation of ODEs for vertex motion

Let us defineC v for vertexV i by

C v(p;V ) =
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2 . We now write our energy as a function of

the verticesV : E(V ) =
R n
0 hF;Ni kCpkdp =

R n
0 hF; JCpi dp; and compute its partial derivative
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�

Cv(p+i�1); J(V i �V i�1)

�
dp

+

Z 1

0
f
�
L(p;V i;V i+1)

�

C v(p+ i); J(V i+1 �V i)

�
dp

=


e ; J(V i �V i�1)

� Z 1

0
pf
�
L(p;V i�1;V i)

�
dp

+


e ; J(V i+1 �V i)

� Z 1

0
(1� p)f

�
L(p;V i;V i+1)

�
dp
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wheree = e x if v = xi or e = e y if v = yi. If we introduce a time variablet and evolve

both coordinatesxi andyi in the gradient directions given above, and denoting the corresponding

J(V i � V i�1) =N i;i�1, we obtain the following gradient flow for the vertexV i

@V i

@t
=

Z 1

0
pf
�
L(p;V i�1;V i)

�
dpN i;i�1 +

Z 1

0
(1� p)f

�
L(p;V i;V i+1)

�
dpN i+1;i:
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Appendix C

Derivation of the Gradient Flow for

Varying Priors proportional to areas

Rewriting here Eq.(4.19), (note thatA = jRuj+ jRvj),

@C

@t
= rcJSa;2 =

mX
j=1

1

2

jRujjRv j
A2

(2(uj � vj)(ruj �rvj))Nu

+
1

2

jRvj
A2

(uj � vj)
2Nu � 1

2

jRuj
A2

(uj � vj)
2Nu; (C.1)

it may be rewritten as follows:

@C

@t
=

Nu

2A2

mX
j=1

(uj � vj)

�
2jRujjRv j(Gj(I)� uj)

jRuj +
2jRujjRvj(Gj(I)� vj)

jRvj

+ (jRvj � jRuj)(uj � vj)

�
=

Nu

2A2

mX
j=1

(uj � vj) (2jRv j(Gj(I)� uj) + 2jRuj(Gj(I)� vj) + (jRv j � jRuj)(uj � vj))

=
Nu

2A2

mX
j=1

(uj � vj) (2jRv jGj(I)� 2jRvjuj + 2jRujGj(I)� 2jRujvj + (jRvj � jRuj)(uj � vj))

=
Nu

2A2

mX
j=1

(uj � vj) (2(jRuj+ jRv j)Gj(I)� jRvjuj � jRujvj � jRujuj � jRvjvj)

=
Nu

2A

mX
j=1

(uj � vj)(Gj(I)� uj +Gj � vj)

=
Nu

2A

mX
j=1

[�(Gj(I)� uj)
2 + (Gj(I)� vj)

2]: (C.2)
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It can be observed that Eq.(C.2) is the gradient descent flow for the following energy functional

E =
1

2A

mX
j=1

Z
Ru

(Gj(I)� uj)
2dxdy +

Z
Rv

(Gj(I)� vj)
2dxdy; (C.3)

which is a generalized form of the energy functional proposed by Chan and Vese [29].
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Appendix D

Derivation of the Electric Field at a

point exerted by a line charge

The integral we want to evaluate is given by

E ab(x
0) =

Z b
a

x 0 � x
jjx 0 � x jj3�dx (D.1)

= kc L

Z 1

0

(x 0 � a ) + t(a � b )
jj(x 0 � a ) + t(a � b )jj3 dt: (D.2)

By making change of variables,u = x 0 �a , andv = a � b , the integral above can be written as

E ab =

Z 1

0

u + tv

jju + tv jj3 dt =
Z 1

0
f 0(t)dt; (D.3)

where we denoted the integrand by a vectorf 0(t), a function oft, which is the derivative of the

solutionf (t) w.r.t t. We expect the solutionf (t), to this integral equation, to be of the form

f (t) =
(au + bv ) + t(cu + dv )

jju + tv jj ; (D.4)

wherea; b; c; andd are scalars to be estimated. Taking the derivative off (t) w.r.t. t, we obtain

(note that in the following, for simplicity we denote the inner product of a vector by itselfv Tv by

v 2, and the inner product by�)

f 0(t) =
(cu + dv )(v 2 + 2tuv + t2v 2)� [(au + bv ) + t(cu + dv )](uv + tv 2)

jju + tv jj3 : (D.5)
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The numerator above can hence be equated to the numerator in the original integral, i.e.u + tv .

This leads to the following two equalities:

u = u (cu 2 � a(uv )) + v (du 2 � b(uv ))

v = u (c(uv )� av 2) + v (d(uv )� bv 2) (D.6)

Equating the corresponding coefficients ofu andv to 0 and1 as required leads to the following

system of linear equations in four unknowns:

26666664
�uv 0 u 2 0

0 �uv 0 u 2

�v 2 0 uv 0

0 �v 2 0 uv

37777775

26666664
a

b

c

d

37777775 =

26666664
1

0

0

1

37777775 :

Carrying out Gaussian elimination on this system of equations leads to a unique solution

26666664
a

b

c

d

37777775 = 1
(uv )2�u 2v 2

26666664
�uv
u 2

�v 2

uv

37777775 :

Substituting the scalar coefficientsa; b; c; andd into the Eq.(D.4), the solution to the integral can be

written as

f (t) =

��(uv )u + u 2v + t(�v 2u + (uv )v )

((uv )2 � u 2v 2)jju + tv jj
� ����1

0

: (D.7)

The resulting electric field atx 0, exerted by the line charge extending froma to b , is then given by

E ab =
kcL

(u 2v 2 � (uv )2)

�
(uv + v 2)u � (u 2 + uv )v

jju + v jj � (uv )u � u 2v

jju jj
�

(D.8)

Noting that (see Figure 4.8)

u = x 0 � a def
= x a

u + v = x 0 � b def
= x b

v = a � b def
= x b � x a;
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and substituting the above vectors into Eq.(D.8), we obtain

E ab(x
0) =

�
(x a � (x b � x a) + jjx b � x ajj2)x a � (jjx ajj2 + x a � (x b � x a))(x b � x a)

jjx bjj

� x a � (x b � x a)x a � jjx ajj2(x b � x a)

jjx ajj
�

kcL

jjx ajj2jjx b � x ajj2 � (x a � (x b � x a))2
;

(D.9)

which can be simplified to Eq.(4.31) rewritten here for convenience

E ab(x
0) =

kc L

jjx ajj2jjx bjj2 � (x a � x b)2

� jjx bjj2x a � (x a � x b)x b

jjx bjj +
jjx ajj2x b � (x a � x b)x a

jjx ajj
�
:

(D.10)
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